- #1
PauloE
- 28
- 0
Homework Statement
I need to proof that VxU=(determinant) starting from VxU=|V||U|sinαe
Homework Equations
VxU=|V||U|sinαe and what I'm aiming to is VxU=(uy⋅uz - uz⋅vy)i - (ux⋅vz - uz⋅vx)j + (ux⋅vy - uy⋅vx)k
The Attempt at a Solution
U x V = |U||V|Sinαe
(U x V)^2 = |U|^2|V|^2 cos^2α - 1 e
(U x V)^2 = |U|^2|V|^2 cos^2α - |U|^2|V|^2
U x V = (ux + uy + uz) (vx + vy + vz)cos^2α - (ux + uy + uz) (vx + vy + vz) e
This is where I get stuck. Can someone point me on the right direction? that cosine and e are disorienting me. Thanks.