- #1
Keen94
- 41
- 1
Homework Statement
Prove that ∑nj=0(-1)j(nCj)=0
Homework Equations
Definition of binomial theorem.
The Attempt at a Solution
If n∈ℕ and 0≤ j < n then 0=∑nj=0(-1)j(nCj)
We know that if a,b∈ℝ and n∈ℕ then (a+b)n=∑nj=0(nCj)(an-jbj)
Let a=1 and b= -1 so that 0=(1+(-1))n=∑nj=0(nCj)(1n-j(-1)j)
LHS=∑nj=0(nCj)(1)(-1)j) since (1n-j)=+1
LHS=∑nj=0(-1)j(nCj)
Is this the best way to prove it or is the induction business better? Thanks in advance!