- #1
Haorong Wu
- 418
- 90
- TL;DR Summary
- The asymptotic behavior of a propagation vector is given in a paper. Need suggestions of reference to understand it.
Hi, there. I am currently reading the paper, Gravitational Faraday rotation induced by a Kerr black hole (https://doi.org/10.1103/PhysRevD.38.472). After Eq. (2.4), it reads that
The paper does not provide the derivation of the equations and no related reference is listed. Also, ##k^i## is not clearly defined in the paper, so I assume it takes the form as ##k^i=dx^i/d\tau## where ##\tau## is some affine parameter. But the concepts of the two constants of motion, ##\lambda## and ##\eta##, are also unfamiliar. I know there are four constants of motion in Kerr spacetime, i.e., the mass, the energy, the ##z## component of angular momentum, and the Carter constant. I could not find the definitions of the two constants of motion, ##\lambda## and ##\eta##, in the paper.
I would be grateful if anyone could share some insights or opinions.
Thanks ahead.
From the equation of motion for a light ray, the asymptotic behavior of ##k_i## near the position of the source or of the observer is given by \begin{align}
k^t\rightarrow& 1,\\
k^r\rightarrow& k^r/|k^r| ,\\
k^\theta\rightarrow &\beta /r^2,\\
k^\phi \rightarrow &\lambda/(r^2\sin^2\theta),
\end{align}
where ##\beta=(\eta-\lambda^2\cot^2\theta +a^2\cos^\theta)^{1/2}k^\theta/|k^\theta|##, and ##\lambda## and ##\eta## are constants of motion.
The paper does not provide the derivation of the equations and no related reference is listed. Also, ##k^i## is not clearly defined in the paper, so I assume it takes the form as ##k^i=dx^i/d\tau## where ##\tau## is some affine parameter. But the concepts of the two constants of motion, ##\lambda## and ##\eta##, are also unfamiliar. I know there are four constants of motion in Kerr spacetime, i.e., the mass, the energy, the ##z## component of angular momentum, and the Carter constant. I could not find the definitions of the two constants of motion, ##\lambda## and ##\eta##, in the paper.
I would be grateful if anyone could share some insights or opinions.
Thanks ahead.