- #1
redtree
- 331
- 14
- TL;DR Summary
- Properties of the Fourier transform of two functions
I was wondering if the following is true and if not, why?
$$
\begin{split}
\hat{f}_1(\vec{k}) \hat{f}_2(\vec{k}) &= \hat{f}_1(\vec{k}) \int_{\mathbb{R}^n} f_2(\vec{x}) e^{-2 \pi i \vec{k} \cdot \vec{x}} d\vec{x}
\\
&= \int_{\mathbb{R}^n} \hat{f}_1(\vec{k}) f_2(\vec{x}) e^{-2 \pi i \vec{k} \cdot \vec{x}} d\vec{x}
\\
&= \mathscr{F}\left[\hat{f}_1(\vec{k}) f_2(\vec{x}) \right]
\end{split}
$$
where
$$
\mathscr{F} \left[ f_n(\vec{x}) \right] = \hat{f}_n(\vec{k})
$$
$$
\begin{split}
\hat{f}_1(\vec{k}) \hat{f}_2(\vec{k}) &= \hat{f}_1(\vec{k}) \int_{\mathbb{R}^n} f_2(\vec{x}) e^{-2 \pi i \vec{k} \cdot \vec{x}} d\vec{x}
\\
&= \int_{\mathbb{R}^n} \hat{f}_1(\vec{k}) f_2(\vec{x}) e^{-2 \pi i \vec{k} \cdot \vec{x}} d\vec{x}
\\
&= \mathscr{F}\left[\hat{f}_1(\vec{k}) f_2(\vec{x}) \right]
\end{split}
$$
where
$$
\mathscr{F} \left[ f_n(\vec{x}) \right] = \hat{f}_n(\vec{k})
$$
Last edited by a moderator: