- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave) Proposition:
"$\mathbb{Z}_p$ contains only the ideals $0$ and $p^n \mathbb{Z}_p$ for $n \in \mathbb{N}_0$. It holds $\bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ and $\mathbb{Z}_p \ p^n\mathbb{Z}_p \cong \mathbb{Z} \ p^n \mathbb{Z}$.
Especially $p\mathbb{Z}_p$ is the only maximal ideal."Proof:
We will show that $\bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$.
If $x=(\overline{x_k}) \in p^n \mathbb{Z}_p$, then it is $0=x_k \in \mathbb{Z}/p^{k+1}\mathbb{Z}$ for $k<n$. Therefore it holds for a $x$ $x_k=0$ for all $k \in \mathbb{N}_0$, thus $x=0$.
Now let any ideal $I \neq 0$. From $\bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ it follows that there is a $n \in \mathbb{N}_0$ with $I \subseteq p^n \mathbb{Z}_p$, but $I \nsubseteq p^{n+1}\mathbb{Z}_p$.
We claim that $I=p^n \mathbb{Z}_p$. From $I \nsubseteq p^{n+1}\mathbb{Z}_p$ follows the existence of a $x=p^nu \in I$ with $u \in \mathbb{Z}_p^{\star}$. Thus it holds $p^n \in I$ and so $p^n \mathbb{Z}_p \subseteq I$.
Since the other inclusion depends on the choice of $n$, we have $I=p^n \mathbb{Z}_p$.
Now we consider the canonical projection
$$\pi: \mathbb{Z}_p \subseteq \Pi_{k \in \mathbb{N}_0} \mathbb{Z}/p^{k+1}\mathbb{Z} \rightarrow \mathbb{Z}/ p^n \mathbb{Z}$$
It is obviously surjective since $\overline{x_{n-1}} \in \mathbb{Z}/p^n \mathbb{Z}$ is the image of $x_{n-1} \in \mathbb{Z}_p$. The kernel of $\pi$ is an ideal and thus of the form $ker \pi=p^l \mathbb{Z}_p$. Since $\pi(p^k)=0$ exactly then when $k \geq n$, it holds $ker \pi=p^n \mathbb{Z}_p$. From the fundamental theorem on homomorphisms we get that $\mathbb{Z}_p/ p^n \mathbb{Z}_p \cong \mathbb{Z}/p^n \mathbb{Z}$. Could you maybe explain to me the above proof? (Thinking)
"$\mathbb{Z}_p$ contains only the ideals $0$ and $p^n \mathbb{Z}_p$ for $n \in \mathbb{N}_0$. It holds $\bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ and $\mathbb{Z}_p \ p^n\mathbb{Z}_p \cong \mathbb{Z} \ p^n \mathbb{Z}$.
Especially $p\mathbb{Z}_p$ is the only maximal ideal."Proof:
We will show that $\bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$.
If $x=(\overline{x_k}) \in p^n \mathbb{Z}_p$, then it is $0=x_k \in \mathbb{Z}/p^{k+1}\mathbb{Z}$ for $k<n$. Therefore it holds for a $x$ $x_k=0$ for all $k \in \mathbb{N}_0$, thus $x=0$.
Now let any ideal $I \neq 0$. From $\bigcap_{n \in \mathbb{N}_0} p^n \mathbb{Z}_p=0$ it follows that there is a $n \in \mathbb{N}_0$ with $I \subseteq p^n \mathbb{Z}_p$, but $I \nsubseteq p^{n+1}\mathbb{Z}_p$.
We claim that $I=p^n \mathbb{Z}_p$. From $I \nsubseteq p^{n+1}\mathbb{Z}_p$ follows the existence of a $x=p^nu \in I$ with $u \in \mathbb{Z}_p^{\star}$. Thus it holds $p^n \in I$ and so $p^n \mathbb{Z}_p \subseteq I$.
Since the other inclusion depends on the choice of $n$, we have $I=p^n \mathbb{Z}_p$.
Now we consider the canonical projection
$$\pi: \mathbb{Z}_p \subseteq \Pi_{k \in \mathbb{N}_0} \mathbb{Z}/p^{k+1}\mathbb{Z} \rightarrow \mathbb{Z}/ p^n \mathbb{Z}$$
It is obviously surjective since $\overline{x_{n-1}} \in \mathbb{Z}/p^n \mathbb{Z}$ is the image of $x_{n-1} \in \mathbb{Z}_p$. The kernel of $\pi$ is an ideal and thus of the form $ker \pi=p^l \mathbb{Z}_p$. Since $\pi(p^k)=0$ exactly then when $k \geq n$, it holds $ker \pi=p^n \mathbb{Z}_p$. From the fundamental theorem on homomorphisms we get that $\mathbb{Z}_p/ p^n \mathbb{Z}_p \cong \mathbb{Z}/p^n \mathbb{Z}$. Could you maybe explain to me the above proof? (Thinking)
Last edited: