- #1
lfdahl
Gold Member
MHB
- 749
- 0
Prove, that there is no $2 \times 2$ matrix, $S$, such that
\[S^n= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\]
for any integer $n \geq 2$.
\[S^n= \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}\]
for any integer $n \geq 2$.