- #1
solakis1
- 422
- 0
prove:
\(\displaystyle \sqrt{a^2+b^2}\leq\sqrt{(x-a)^2+(y-b)^2}+\sqrt{x^2+y^2}\)
\(\displaystyle \sqrt{a^2+b^2}\leq\sqrt{(x-a)^2+(y-b)^2}+\sqrt{x^2+y^2}\)