- #1
lfdahl
Gold Member
MHB
- 749
- 0
- except for this one: :) Given: $a_1 \ge a_2 \ge .. \ge a_n \ge 0$ and the constraint: $\sum_{i=1}^{n}a_i = 1$.
Prove, that
\[a_1^2+3a_2^2+5a_3^2+...+(2n-1)a_n^2 \le 1\]
Prove, that
\[a_1^2+3a_2^2+5a_3^2+...+(2n-1)a_n^2 \le 1\]