- #1
issacnewton
- 1,041
- 37
- Homework Statement
- Prove ##a\cdot b = b \cdot a ## for ##a,b \in \mathbb{N}## using Peano postulates
- Relevant Equations
- The book I am using ("The real numbers and real analysis" by Ethan Bloch) defines Peano postulates little differently.
Following is a set of Peano postulates I am using. (Axiom 1.2.1 in Bloch's book)
There exists a set ##\mathbb{N}## with an element ##1 \in \mathbb{N}## and a function ##s: \mathbb{N} \rightarrow \mathbb{N} ## that satisfy the following three properties.
1) There is no ##n \in \mathbb{N}## such that ##s(n) = 1##
2) The function ##s## is injective.
3) Let ##G \subseteq \mathbb{N}## be a set. Suppose that ##1 \in G##, and that if ##g \in G## then ##s(g) \in G##. Then ## G = \mathbb{N} ##
And addition operation is given in Theorem 1.2.5 as follows
There is a unique binary operation ##+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} ## that satisfies the following two properties for all ##n, m \in \mathbb{N} ##
a. ## n + 1 = s(n) ##
b. ## n + s(m) = s(n + m) ##
Multiplication operation is given in Theorem 1.2.6 as follows
There is a unique binary operation ## \cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N} ## that satisfies the following two properties for all ##n, m \in \mathbb{N} ##
a. ##n \cdot 1 = n ##
b. ## n \cdot s(m) = (n \cdot m) + n ##
I am also going to assume following results for this proof.
Identity law for multiplication for ## a\in \mathbb{N} ##
$$ a \cdot 1 = a = 1 \cdot a $$
Distributive law
$$ (a + b) \cdot c = a \cdot c + b \cdot c $$
with this background, we proceed to the proof. Let us define a set
$$ G = \{ z \in \mathbb{N} | \mbox{ if } y \in \mathbb{N}, y\cdot z = z \cdot y \} $$
We want to prove that ##G = \mathbb{N} ##. For this purpose, we will use part 3) of Peano postulates given above. Obviously, ## G \subseteq \mathbb{N} ##. Since ## 1 \in \mathbb{N}## from Peano postulates and for arbitrary ##y \in \mathbb{N}##, using Identity law for multiplication, we have ## y \cdot 1 = 1 \cdot y##. Hence ## 1\in G ##. Now, suppose ## r \in G##. So ##r \in \mathbb{N}## and it follows that
$$ \forall y \in \mathbb{N} \; \left[ y \cdot r = r \cdot y \right] \cdots\cdots (1)$$
Now, let ## y \in \mathbb{N} ## be arbitrary. Using addition definition part (a), we have ## s(r) \cdot y = (r + 1) \cdot y##. Using Distributive law, we get ##s(r) \cdot y = r \cdot y + 1 \cdot y##. Using equation 1 for ##y## and Identity law for multiplication for ##y##, we have ##s(r) \cdot y = y \cdot r + y##. Finally, using multiplication definition part (b), ##s(r) \cdot y = y \cdot s(r)##. Since ## y \in \mathbb{N} ## be arbitrary, this means that
$$ \forall y \in \mathbb{N} \; \left[ y \cdot s(r) = s(r) \cdot y \right] $$
Since ## s(r) \in \mathbb{N}##, this means that ##s(r) \in G## and using part 3) of Peano postulates given above, ## G = \mathbb{N}##. Now, if ## a, b \in \mathbb{N}##, we have ##b \in G## and it follows that ##a\cdot b = b \cdot a##.
Is this proof valid ?
Thanks
$$ G = \{ z \in \mathbb{N} | \mbox{ if } y \in \mathbb{N}, y\cdot z = z \cdot y \} $$
We want to prove that ##G = \mathbb{N} ##. For this purpose, we will use part 3) of Peano postulates given above. Obviously, ## G \subseteq \mathbb{N} ##. Since ## 1 \in \mathbb{N}## from Peano postulates and for arbitrary ##y \in \mathbb{N}##, using Identity law for multiplication, we have ## y \cdot 1 = 1 \cdot y##. Hence ## 1\in G ##. Now, suppose ## r \in G##. So ##r \in \mathbb{N}## and it follows that
$$ \forall y \in \mathbb{N} \; \left[ y \cdot r = r \cdot y \right] \cdots\cdots (1)$$
Now, let ## y \in \mathbb{N} ## be arbitrary. Using addition definition part (a), we have ## s(r) \cdot y = (r + 1) \cdot y##. Using Distributive law, we get ##s(r) \cdot y = r \cdot y + 1 \cdot y##. Using equation 1 for ##y## and Identity law for multiplication for ##y##, we have ##s(r) \cdot y = y \cdot r + y##. Finally, using multiplication definition part (b), ##s(r) \cdot y = y \cdot s(r)##. Since ## y \in \mathbb{N} ## be arbitrary, this means that
$$ \forall y \in \mathbb{N} \; \left[ y \cdot s(r) = s(r) \cdot y \right] $$
Since ## s(r) \in \mathbb{N}##, this means that ##s(r) \in G## and using part 3) of Peano postulates given above, ## G = \mathbb{N}##. Now, if ## a, b \in \mathbb{N}##, we have ##b \in G## and it follows that ##a\cdot b = b \cdot a##.
Is this proof valid ?
Thanks