- #1
fishturtle1
- 394
- 82
- Homework Statement
- Suppose ##G = D_6 = \langle a, b \vert a^3 = b^2 = 1, b^{-1}ab = a^{-1} \rangle## and let ##\omega = e^{2\pi i/3}##. Prove that the ##2## dimensional subspace ##W## of the ##\mathbb{C}G## defined by
$$W = sp(1 + \omega^2a + \omega a^2, b + \omega^2ab + \omega a^2b)$$
is an irreducible ##\mathbb{C}G##-submodule of the regular ##\mathbb{C}G## module.
- Relevant Equations
- Definitions:
We define ##\mathbb{C}G = \lbrace \sum_{g \in G} \mu_g g : \mu_g \in \mathbb{C} \rbrace##. For ##r \in \mathbb{C}G## and ##h \in G##, we define ##rh = \sum_{g \in G} \mu_g (gh)##.
We say ##W## is a ##\mathbb{C}G## submodule of ##\mathbb{C}G## if it is a subspace of ##\mathbb{C}G## and is satisfies ##wh \in W## for all ##w \in W## and ##h \in G##.
We say a ##\mathbb{C}G## module is irreducible if its only submodules are itself and ##\lbrace 0 \rbrace##.
Proof: We first show ##W## is a ##\mathbb{C}G## module. Let ##u = 1 + \omega^2a + \omega a^2## and ##v = b + \omega^2ab + \omega a^2b##. It is enough to show ##ua, ub, va, vb \in W##. We have\begin{align}
ua &= a + \omega^2a^2 + \omega \\
ub &= b + \omega^2ab + \omega a^2b \\
va &= ba + \omega^2 aba + \omega a^2ba = a^3b + \omega^2 b + \omega^2 ab\\
vb &= 1 + \omega^2a + \omega a^2 \\
\end{align}
Then ##ub = v \in W## and ##vb = u \in W##. But I do not see how to show ##ua## and ##va## are in ##W##. If I could do this, then I would have to show ##W## has no non trivial submodule. Suppose ##U## is a submodule of ##W## such that ##\dim U = 1##. Then ##U = sp( \alpha u + \beta v)## for some ##\alpha, \beta \in \mathbb{C}##. Since ##U## is a ##\mathbb{C}G## module, we must have ##xg \in U## for all ##x \in U## and ##g \in G##. In particular, we have ##(\alpha u + \beta v )b = \alpha v + \beta u##. So, there exists ##\lambda \in \mathbb{C}## such that ##\lambda(\alpha v + \beta u) = \alpha u + \beta v##. We can rewrite this as
$$(\lambda\beta)u + (\lambda\alpha)v = \alpha u + \beta v$$
Since ##u, v## are linearly independent, we have ##\lambda \beta = \alpha## and ##\lambda \alpha = \beta##. And this implies ##\lambda\beta = \lambda^{-1}\beta##. So, ##\lambda = \lambda^{-1}## or ##\beta = 0##. Does this seem on the right track?
ua &= a + \omega^2a^2 + \omega \\
ub &= b + \omega^2ab + \omega a^2b \\
va &= ba + \omega^2 aba + \omega a^2ba = a^3b + \omega^2 b + \omega^2 ab\\
vb &= 1 + \omega^2a + \omega a^2 \\
\end{align}
Then ##ub = v \in W## and ##vb = u \in W##. But I do not see how to show ##ua## and ##va## are in ##W##. If I could do this, then I would have to show ##W## has no non trivial submodule. Suppose ##U## is a submodule of ##W## such that ##\dim U = 1##. Then ##U = sp( \alpha u + \beta v)## for some ##\alpha, \beta \in \mathbb{C}##. Since ##U## is a ##\mathbb{C}G## module, we must have ##xg \in U## for all ##x \in U## and ##g \in G##. In particular, we have ##(\alpha u + \beta v )b = \alpha v + \beta u##. So, there exists ##\lambda \in \mathbb{C}## such that ##\lambda(\alpha v + \beta u) = \alpha u + \beta v##. We can rewrite this as
$$(\lambda\beta)u + (\lambda\alpha)v = \alpha u + \beta v$$
Since ##u, v## are linearly independent, we have ##\lambda \beta = \alpha## and ##\lambda \alpha = \beta##. And this implies ##\lambda\beta = \lambda^{-1}\beta##. So, ##\lambda = \lambda^{-1}## or ##\beta = 0##. Does this seem on the right track?