- #1
eyehategod
- 82
- 0
Prove if A is orthogonal matrix, then |A|=+-1
A[tex]^{-1}[/tex]=A[tex]^{T}[/tex]
AA[tex]^{-1}[/tex]=AA[tex]^{T}[/tex]
I=AA[tex]^{T}[/tex]
|I|=|AA[tex]^{T}[/tex]|
1=|A|*|A[tex]^{T}[/tex]|//getting to the next step is where i get confused. Why is |A|=|A[tex]^{T}[/tex]|
1=|A|*|A|
1=|A|[tex]^{2}[/tex]
+-1=|A|
A[tex]^{-1}[/tex]=A[tex]^{T}[/tex]
AA[tex]^{-1}[/tex]=AA[tex]^{T}[/tex]
I=AA[tex]^{T}[/tex]
|I|=|AA[tex]^{T}[/tex]|
1=|A|*|A[tex]^{T}[/tex]|//getting to the next step is where i get confused. Why is |A|=|A[tex]^{T}[/tex]|
1=|A|*|A|
1=|A|[tex]^{2}[/tex]
+-1=|A|
Last edited: