MHB Prove a Polynomial has no real roots

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Polynomial Roots
AI Thread Summary
Polynomials of the form P_n(x) = x^{2n} - 2x^{2n-1} + 3x^{2n-2} - ... - 2nx + 2n + 1 have been proven to have no real roots. This is established by defining Q_n(x) as a positive function for all x, with a minimum value of n + 1 at x = 1. The proof employs mathematical induction, starting with the base case P_1(x) = Q_1(x) = x^2 - 2x + 3. The inductive step shows that if P_n(x) equals Q_n(x), then P_{n+1}(x) also equals Q_{n+1}(x), maintaining the property of having no real roots. Thus, all polynomials P_n(x) are confirmed to be positive and lack real roots.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove that polynomials of the form:\[P_n(x)=x^{2n}-2x^{2n-1}+3x^{2n-2}-...-2nx+2n+1, \: \: n = 1,2,...\]- have no real roots.
 
Mathematics news on Phys.org
lfdahl said:
Prove that polynomials of the form:\[P_n(x)=x^{2n}-2x^{2n-1}+3x^{2n-2}-...-2nx+2n+1, \: \: n = 1,2,...\]- have no real roots.
[sp]Let $Q_n(x) = (x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)$. Then $Q_n(x)>0$ for all $x$. (In fact, $Q_n(x)$ has minimum value $n+1$, when $x=1$, because each term in the expression for $Q_n(x)$ is an even power of either $x$ or $x-1$.) So $Q_n(x)$ has no real roots. It will therefore be sufficient to show that $P_n(x) = Q_n(x).$

To prove that by induction, the base case $P_1(x) = Q_1(x) = x^2 - 2x + 3$ is easy to check.

Suppose that $P_n(x) = Q_n(x)$ for some $n$. Then $$\begin{aligned} P_{n+1}(x) &= x^{2n+2}-2x^{2n+1}+3x^{2n}- \ldots -(2n+2)x + (2n+3) \\ &= x^2\bigl(x^{2n}-2x^{2n-1}+3x^{2n-2}- \ldots + (2n+1)\bigr) -(2n+2)x + (2n+3) \\ &= x^2P_n(x) -(2n+2)x + (2n+3) \\ &= x^2Q_n(x) -(2n+2)x + (2n+3) \\ &= x^2(x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)x^2 -(2n+2)x + (2n+3) \\ &= (x-1)^2(x^{2n} + 2x^{2n-2} + 3x^{2n-4} + \ldots + nx^2) + (n+1)(x-1)^2 + (n+2) \\ &= (x-1)^2\bigl(x^{2n} + 2x^{2n-2} + 3x^{2n-4} + \ldots + nx^2 + (n+1)\bigr) + (n+2) \\ &= Q_{n+1}(x) .\end{aligned}$$ That completes the inductive step.[/sp]
 
Opalg said:
[sp]Let $Q_n(x) = (x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)$. Then $Q_n(x)>0$ for all $x$. (In fact, $Q_n(x)$ has minimum value $n+1$, when $x=1$, because each term in the expression for $Q_n(x)$ is an even power of either $x$ or $x-1$.) So $Q_n(x)$ has no real roots. It will therefore be sufficient to show that $P_n(x) = Q_n(x).$

To prove that by induction, the base case $P_1(x) = Q_1(x) = x^2 - 2x + 3$ is easy to check.

Suppose that $P_n(x) = Q_n(x)$ for some $n$. Then $$\begin{aligned} P_{n+1}(x) &= x^{2n+2}-2x^{2n+1}+3x^{2n}- \ldots -(2n+2)x + (2n+3) \\ &= x^2\bigl(x^{2n}-2x^{2n-1}+3x^{2n-2}- \ldots + (2n+1)\bigr) -(2n+2)x + (2n+3) \\ &= x^2P_n(x) -(2n+2)x + (2n+3) \\ &= x^2Q_n(x) -(2n+2)x + (2n+3) \\ &= x^2(x-1)^2(x^{2n-2} + 2x^{2n-4} + 3x^{2n-6} + \ldots + n) + (n+1)x^2 -(2n+2)x + (2n+3) \\ &= (x-1)^2(x^{2n} + 2x^{2n-2} + 3x^{2n-4} + \ldots + nx^2) + (n+1)(x-1)^2 + (n+2) \\ &= (x-1)^2\bigl(x^{2n} + 2x^{2n-2} + 3x^{2n-4} + \ldots + nx^2 + (n+1)\bigr) + (n+2) \\ &= Q_{n+1}(x) .\end{aligned}$$ That completes the inductive step.[/sp]

Thankyou very much, Opalg for another brilliant answer!

I am curious :o. Please explain how on Earth you came up with the expression for $Q_n(x)$.
Thankyou in advance.

- - - Updated - - -

An alternative approach:

Note, that $P_n(x) > 0$ for $x \le 0$, since the terms with negative coefficients are multiplied by odd powers of $x$.

Now,
\[P_n(x)+xP_n(x) = x\left ( x^{2n}-x^{2n-1}+x^{2n-2}-...-x+1 \right )+2n+1\]
- so
$$P_n(x) = x\frac{x^{2n+1}+1}{(x+1)^2}+\frac{2n+1}{x+1} \Rightarrow P_n(x) > 0,\: \: x>0.\]
Done.
 
Last edited:
lfdahl said:
I am curious :o. Please explain how on Earth you came up with the expression for $Q_n(x)$.
[sp]That just came from looking at what happens for small values of $n$. You soon find that each $P_n(x)$ (for $n=1,2,3$) has its minimum value when $x=1$, and that this minimum value is $n+1$. That leads to the discovery that $P_n(x) - (n+1)$ has a factor $(x-1)^2$. The quotient of $P_n(x) - (n+1)$ by that factor is $Q_n(x).$[/sp]

lfdahl said:
$$P_n(x) = x\frac{x^{2n+1}+1}{x+1}+2n+1\Rightarrow P_n(x) > 2n+1,\: \: x>0.$$
[sp]That should be $$(1+x)P_n(x) = x\frac{x^{2n+1}+1}{x+1}+2n+1$$, which certainly shows that $P_n(x)>0$ for $x>0$. But it is not so clear from that expression what the minimum value of $P_n(x)$ should be (in fact, it is $n+1$, not $2n+1$).[/sp]
 
[sp]That should be $$(1+x)P_n(x) = x\frac{x^{2n+1}+1}{x+1}+2n+1$$, which certainly shows that $P_n(x)>0$ for $x>0$. But it is not so clear from that expression what the minimum value of $P_n(x)$ should be (in fact, it is $n+1$, not $2n+1$).[/sp]

Oh, yes. I´m sorry for my typo ... I´ll edit my solution right away.
Thankyou, also for explaining the idea that led to the expression of $Q_n(x)$.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
10
Views
4K
Replies
14
Views
2K
Replies
4
Views
1K
Replies
5
Views
1K
Replies
14
Views
2K
Replies
4
Views
1K
Back
Top