- #1
brotherbobby
- 702
- 163
- Homework Statement
- If ##\dfrac{x}{b+c-a}=\dfrac{y}{c+a-b}=\dfrac{z}{a+b-c},## ##\\[10pt]##
prove that ##\boxed{\boldsymbol{\dfrac{x+y+z}{a+b+c}=\dfrac{x(y+z)+y(z+x)+z(x+y)}{2(ax+by+cz)}}}##
- Relevant Equations
- ##\mathbf{Theorem :}## If fractions ##\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{e}{f}=\ldots##, each of the fractions is equal to ##\left( \dfrac{pa^n+qc^n+re^n+\ldots}{pb^n+qd^n+rf^n+\ldots}\right)^{1/n}##
Problem Statement : If ##\dfrac{x}{b+c-a}=\dfrac{y}{c+a-b}=\dfrac{z}{a+b-c},## prove that ##\boxed{\boldsymbol{\dfrac{x+y+z}{a+b+c}=\dfrac{x(y+z)+y(z+x)+z(x+y)}{2(ax+by+cz)}}}##
Attempt : Let the fractions (ratios) ##\dfrac{x}{b+c-a}=\dfrac{y}{c+a-b}=\dfrac{z}{a+b-c} = \boldsymbol{k}##. ##\\[10pt]##
One consequnce of the Relevant equations given above is that if ##\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots = \frac{a+c+e+\ldots}{b+d+f+\ldots}##. This can be shown by putting ##p=q=r=\ldots = n = 1##. ##\\[10 pt]##
Hence from the problem statement ##\dfrac{x}{b+c-a}=\dfrac{y}{c+a-b}=\dfrac{z}{a+b-c} = \dfrac{x+y+z}{b+c-a+c+a-b+a+b-c}= \dfrac{x+y+z}{a+b+c}##.
So the L.H.S of the required equation is the same as each of the given fractions.
Hence, what we need to show is that the R.H.S of the required equation is also equal to the given fractions, which I have simply put to be equal to ##k##.
Let's see. The R.H.S. = ##\dfrac{x(y+z)+y(z+x)+z(x+y)}{2(ax+by+cz)}= \dfrac{(x+y+z)^2-(x^2+y^2+z^2)}{2(ax+by+cz)}=\dfrac{k^2(a+b+c)^2-k^2\{(b+c-a)^2+(c+a-b)^2+(a+b-c)^2\}}{2k\{ a(b+c-a)+b(c+a-b)+c(a+b-c) \}}## ##\\[10pt]## ##=\dfrac{k}{2}\dfrac{-2(a^2+b^2+c^2)+(4bc+4ca+4ab)}{2bc+2ca+2ab-(a^2+b^2+c^2)}=k\dfrac{(a^2+b^2+c^2)-2(ab+bc+ca)}{(a^2+b^2+c^2)-(2ab+2bc+2ca)}= k## (proved).
The issue : The book I am working from (Hall and Knight, Higher Algebra), has explicitly asked not to assume the given ratios (fractions) ##\dfrac{x}{b+c-a}=\dfrac{y}{c+a-b}=\dfrac{z}{a+b-c} = \boldsymbol{k}##, which is what I have done. I can't see right now how the problem above can be done without it.
A hint or a suggestion to solve the problem without the use of the "fractional representative" ##k## would be welcome.
Attempt : Let the fractions (ratios) ##\dfrac{x}{b+c-a}=\dfrac{y}{c+a-b}=\dfrac{z}{a+b-c} = \boldsymbol{k}##. ##\\[10pt]##
One consequnce of the Relevant equations given above is that if ##\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots = \frac{a+c+e+\ldots}{b+d+f+\ldots}##. This can be shown by putting ##p=q=r=\ldots = n = 1##. ##\\[10 pt]##
Hence from the problem statement ##\dfrac{x}{b+c-a}=\dfrac{y}{c+a-b}=\dfrac{z}{a+b-c} = \dfrac{x+y+z}{b+c-a+c+a-b+a+b-c}= \dfrac{x+y+z}{a+b+c}##.
So the L.H.S of the required equation is the same as each of the given fractions.
Hence, what we need to show is that the R.H.S of the required equation is also equal to the given fractions, which I have simply put to be equal to ##k##.
Let's see. The R.H.S. = ##\dfrac{x(y+z)+y(z+x)+z(x+y)}{2(ax+by+cz)}= \dfrac{(x+y+z)^2-(x^2+y^2+z^2)}{2(ax+by+cz)}=\dfrac{k^2(a+b+c)^2-k^2\{(b+c-a)^2+(c+a-b)^2+(a+b-c)^2\}}{2k\{ a(b+c-a)+b(c+a-b)+c(a+b-c) \}}## ##\\[10pt]## ##=\dfrac{k}{2}\dfrac{-2(a^2+b^2+c^2)+(4bc+4ca+4ab)}{2bc+2ca+2ab-(a^2+b^2+c^2)}=k\dfrac{(a^2+b^2+c^2)-2(ab+bc+ca)}{(a^2+b^2+c^2)-(2ab+2bc+2ca)}= k## (proved).
The issue : The book I am working from (Hall and Knight, Higher Algebra), has explicitly asked not to assume the given ratios (fractions) ##\dfrac{x}{b+c-a}=\dfrac{y}{c+a-b}=\dfrac{z}{a+b-c} = \boldsymbol{k}##, which is what I have done. I can't see right now how the problem above can be done without it.
A hint or a suggestion to solve the problem without the use of the "fractional representative" ##k## would be welcome.