MHB Prove a_0+a_1+…+a_2016>3^(2017)−1

  • Thread starter Thread starter lfdahl
  • Start date Start date
AI Thread Summary
The polynomial P(x) has 2017 real roots, denoted as λ_k, and the polynomial P(Q(x)) has no real roots, where Q(x) = (1/4)x^2 + x - 1. Since the minimum value of Q(x) is -2, all roots λ_k must be less than -2. Evaluating P(1) leads to the conclusion that P(1) > 3^2017, which implies that the sum of the coefficients a_0 + a_1 + ... + a_{2016} is greater than 3^2017 - 1. This establishes the required inequality.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Suppose, that the polynomial $P(x) = x^{2017}+a_{2016}x^{2016}+ a_{2015}x^{2015}+ … + a_1x + a_0$ has $2017$ real roots,

while the polynomial $P(Q(x))$, where $Q(x) = \frac{1}{4}x^2+x-1$, has no real root.

Prove, that $a_0 + a_1 + … + a_{2016} > 3^{2017}-1.$
 
Mathematics news on Phys.org
lfdahl said:
Suppose, that the polynomial $P(x) = x^{2017}+a_{2016}x^{2016}+ a_{2015}x^{2015}+ … + a_1x + a_0$ has $2017$ real roots,

while the polynomial $P(Q(x))$, where $Q(x) = \frac{1}{4}x^2+x-1$, has no real root.

Prove, that $a_0 + a_1 + … + a_{2016} > 3^{2017}-1.$
[sp]If $\lambda_1,\,\lambda_2,\ldots,\lambda_{2017}$ are the real roots of $P(x)$ then $P(x) = (x - \lambda_1)(x - \lambda_2)\cdots (x - \lambda_{2017}).$

If there is a real number $x$ such that $Q(x) = \lambda_k$ for some $k$, then $x$ would be a real root of $P(Q(x))$. Therefore none of the roots $\lambda_k$ can be in the range of the polynomial $Q(x)$.

The minimum value of $Q(x)$ is $Q(-2) = -2$, so the range of $Q(x)$ is $[-2,\infty)$. Therefore $\lambda_k < -2$ for all $k$. It follows that $$\begin{aligned}P(1) &= (1 - \lambda_1)(1 - \lambda_2)\cdots (1 - \lambda_{2017}) \\ &> (1 - (-2))(1 - (-2))\cdots (1 - (-2)) = 3^{2017}.\end{aligned}$$ But $P(1) = 1+a_{2016} + a_{2015} + \ldots + a_1 + a_0$. Thus $a_0 + a_1 + \ldots + a_{2016} > 3^{2017}-1.$
[/sp]
 
Opalg said:
[sp]If $\lambda_1,\,\lambda_2,\ldots,\lambda_{2017}$ are the real roots of $P(x)$ then $P(x) = (x - \lambda_1)(x - \lambda_2)\cdots (x - \lambda_{2017}).$

If there is a real number $x$ such that $Q(x) = \lambda_k$ for some $k$, then $x$ would be a real root of $P(Q(x))$. Therefore none of the roots $\lambda_k$ can be in the range of the polynomial $Q(x)$.

The minimum value of $Q(x)$ is $Q(-2) = -2$, so the range of $Q(x)$ is $[-2,\infty)$. Therefore $\lambda_k < -2$ for all $k$. It follows that $$\begin{aligned}P(1) &= (1 - \lambda_1)(1 - \lambda_2)\cdots (1 - \lambda_{2017}) \\ &> (1 - (-2))(1 - (-2))\cdots (1 - (-2)) = 3^{2017}.\end{aligned}$$ But $P(1) = 1+a_{2016} + a_{2015} + \ldots + a_1 + a_0$. Thus $a_0 + a_1 + \ldots + a_{2016} > 3^{2017}-1.$
[/sp]

The ink has hardly dried, before you came up with this excellent solution, Opalg!
Thankyou very much for your participation!(Clapping)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
15
Views
2K
Replies
7
Views
1K
Replies
4
Views
1K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
11
Views
2K
Back
Top