- #1
Albert1
- 1,221
- 0
$a,b\in N ,\, and \,\, a>b,\,\, sin \,\theta=\dfrac {2ab}{a^2+b^2}$
(where $0<\theta <\dfrac {\pi}{2}$)
$A_n=(a^2+b^2)^nsin \,n\theta$
prove :$A_n$ is an integer for all n $\in N$
(where $0<\theta <\dfrac {\pi}{2}$)
$A_n=(a^2+b^2)^nsin \,n\theta$
prove :$A_n$ is an integer for all n $\in N$