MHB Prove Acute Triangle Inequality: $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$

Click For Summary
In an acute triangle with interior angles α, β, and γ, if α < β < γ, it can be proven that sin 2α > sin 2β > sin 2γ. The discussion emphasizes the relationship between the angles and their sine values, leveraging properties of the sine function in acute angles. The proof involves analyzing the behavior of the sine function, which is increasing in the interval of acute angles. The participants acknowledge the correctness of the proof presented. The conclusion reinforces the established inequality among the sine values of the angles.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $\alpha,\,\beta$ and $\gamma$ be the interior angles of an acute triangle.

Prove that if $\alpha \lt \beta \lt \gamma$, then $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.
 
Mathematics news on Phys.org
anemone said:
Let $\alpha,\,\beta$ and $\gamma$ be the interior angles of an acute triangle.

Prove that if $\alpha \lt \beta \lt \gamma$, then $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.

There are 2 cases

no angle is less than $\frac{\pi}{4}$ and from given condition no angle is greater than or equal to $\frac{\pi}{2}$
so we have

$\frac{\pi}{4} \le \alpha \lt \beta \lt \gamma \lt \frac{\pi}{2}$

hence $\frac{\pi}{2} \le 2\alpha \lt 2\beta \lt 2\gamma \lt \pi$

as $\sin $ is monotonically decreasing from $\frac{\pi}{2}$ to $\pi$ hence $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.

case 2 :
one angle $\alpha \lt \frac{\pi}{4}$ and hence $\frac{\pi}{2} - \alpha <\beta$ otherwise $\gamma \ge \frac{\pi}{2}$
$\frac{\pi}{4} \le \frac{\pi}{2}- \alpha \lt \beta \lt \gamma \lt \frac{\pi}{2}$
hence $\frac{\pi}{2} \le \pi- 2\alpha \lt 2\beta \lt 2\gamma \lt \pi$
as $\sin $ is monotonically decreasing from $\frac{\pi}{2}$ to $\pi$ hence $\sin (\pi-2\alpha) \gt \sin 2\beta \gt \sin 2\gamma$.
or $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.
 
kaliprasad said:
There are 2 cases

no angle is less than $\frac{\pi}{4}$ and from given condition no angle is greater than or equal to $\frac{\pi}{2}$
so we have

$\frac{\pi}{4} \le \alpha \lt \beta \lt \gamma \lt \frac{\pi}{2}$

hence $\frac{\pi}{2} \le 2\alpha \lt 2\beta \lt 2\gamma \lt \pi$

as $\sin $ is monotonically decreasing from $\frac{\pi}{2}$ to $\pi$ hence $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.

case 2 :
one angle $\alpha \lt \frac{\pi}{4}$ and hence $\frac{\pi}{2} - \alpha <\beta$ otherwise $\gamma \ge \frac{\pi}{2}$
$\frac{\pi}{4} \le \frac{\pi}{2}- \alpha \lt \beta \lt \gamma \lt \frac{\pi}{2}$
hence $\frac{\pi}{2} \le \pi- 2\alpha \lt 2\beta \lt 2\gamma \lt \pi$
as $\sin $ is monotonically decreasing from $\frac{\pi}{2}$ to $\pi$ hence $\sin (\pi-2\alpha) \gt \sin 2\beta \gt \sin 2\gamma$.
or $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.
Very well done kaliprasad!(Cool)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K