- #1
MxwllsPersuasns
- 101
- 0
Homework Statement
Show that every matrix A ∈ O(2, R) is of the form R(α) = cos α − sin α sin α cos α (this is the 2d rotation matrix -- I can't make it in matrix format) or JR(α). Interpret the maps x → R(α)x and x → JR(α)x for x ∈ R 2
Homework Equations
The Attempt at a Solution
So I know that O(2,R) is the group of isometries (distance-preserving transformations) of the real plane. I know that the orthogonal group can be represented in this way (with the binary operation being composition of transformations) or it can be represented in the following way:
It is the group of 2-D Real Orthogonal Matrices with matrix multiplication being the Binary operation. With an orthogonal matrix being a matrix whose inverse equals its transpose.
I wasn't able to find any lists of the elements A of O(2,R) or O(n) on any website so by that I imagine we must use the general properties to show that any element that satisfies those particular properties must be of the form R(α). I'm unsure how to go about doing this exactly though.. I would probably start by listing all the properties of O(2,R) and then maybe try to abstract a way to connect those properties to the matrix form R(α). Can anyone help me on this?
Also I would interpret the maps x → R(α)x to be a rotation of x in the plane by angle α
I would interpret x → JR(α)x to be a rotation by (α + 90°) since the J matrix rotates by 90 degrees