- #1
lfdahl
Gold Member
MHB
- 749
- 0
Prove, that
$\sum_{j=1}^{2n-1}\frac{(-1)^{j-1}j}{{2n \choose j }} = \frac{n}{n+1}$
i have tried with proof by induction, but it is very difficult to use this technique.
I should be very glad to see any approach, that can crack this nut.
$\sum_{j=1}^{2n-1}\frac{(-1)^{j-1}j}{{2n \choose j }} = \frac{n}{n+1}$
i have tried with proof by induction, but it is very difficult to use this technique.
I should be very glad to see any approach, that can crack this nut.