- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
View attachment 2512
In a triangle $ABC$, it's given that $AB=AC$, point $D$ is on $BC$ whereas point $E$ is on $AD$ such that $\angle BED=2 \angle CED=\angle BAC$.
Prove that $BD=2CD$.
Note:
This problem is actually posted by Albert at another math forum about 2 years ago and for all information, I have gained his "permission" to post the exact same problem here, for the folks to have some fun solving it either trigonometrically or geometrically.
In a triangle $ABC$, it's given that $AB=AC$, point $D$ is on $BC$ whereas point $E$ is on $AD$ such that $\angle BED=2 \angle CED=\angle BAC$.
Prove that $BD=2CD$.
Note:
This problem is actually posted by Albert at another math forum about 2 years ago and for all information, I have gained his "permission" to post the exact same problem here, for the folks to have some fun solving it either trigonometrically or geometrically.
Attachments
Last edited: