- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Wave)
The set $\mathbb{R}$ of real numbers is not countable.
Proof:
We define the function $F: \{0,1\}^{\omega} \to \mathbb{R}$ with the formula:
$$(a_n)_{n \in \omega} \in \{0,1\}^{\omega} \mapsto F((a_n)_{n \in \omega})=\sum_{n=0}^{\infty} \frac{2a_n}{3^{n+1}}$$
Show that $F$ is 1-1 and thus if $\mathbb{R}$ is countable then the set $\{0,1\}^{\omega}$ would also be, that is a contradiction.So we pick $(a_n)_{n \in \omega}, (b_n)_{n \in \omega} \in \{0,1\}^{\omega}$ with $F((a_n)_{n \in \omega})=F((b_n)_{n \in \omega}) \Rightarrow \sum_{n=0}^{\infty} \frac{2a_n}{3^{n+1}}=\sum_{n=0}^{\infty} \frac{2b_n}{3^{n+1}}$We will show that it holds using induction.At the base case, we assume that $a_0 \neq b_0$, let $a_0=0, b_0=1$.
So we have $\sum_{n=1}^{\infty} \frac{2a_n}{3^{n+1}}=\frac{2}{3}+\sum_{n=1}^{\infty} \frac{2b_n}{3^{n+1}}$
How could we find a contradiction? (Thinking)
The set $\mathbb{R}$ of real numbers is not countable.
Proof:
We define the function $F: \{0,1\}^{\omega} \to \mathbb{R}$ with the formula:
$$(a_n)_{n \in \omega} \in \{0,1\}^{\omega} \mapsto F((a_n)_{n \in \omega})=\sum_{n=0}^{\infty} \frac{2a_n}{3^{n+1}}$$
Show that $F$ is 1-1 and thus if $\mathbb{R}$ is countable then the set $\{0,1\}^{\omega}$ would also be, that is a contradiction.So we pick $(a_n)_{n \in \omega}, (b_n)_{n \in \omega} \in \{0,1\}^{\omega}$ with $F((a_n)_{n \in \omega})=F((b_n)_{n \in \omega}) \Rightarrow \sum_{n=0}^{\infty} \frac{2a_n}{3^{n+1}}=\sum_{n=0}^{\infty} \frac{2b_n}{3^{n+1}}$We will show that it holds using induction.At the base case, we assume that $a_0 \neq b_0$, let $a_0=0, b_0=1$.
So we have $\sum_{n=1}^{\infty} \frac{2a_n}{3^{n+1}}=\frac{2}{3}+\sum_{n=1}^{\infty} \frac{2b_n}{3^{n+1}}$
How could we find a contradiction? (Thinking)