- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Consider the sequences $(c_n)_n,\,(d_n)_n$ defined by
$c_0=0$, $c_1=2$, $c_{n+1}=4c_n+c_{n-1}$, $n \ge 0$,
$d_0=0$, $d_1=1$, $d_{n+1}=c_n-d_n+d_{n-1}$, $n \ge 0$.
Prove that $(c_n)^3=d_{3n}$ for all $n$.
$c_0=0$, $c_1=2$, $c_{n+1}=4c_n+c_{n-1}$, $n \ge 0$,
$d_0=0$, $d_1=1$, $d_{n+1}=c_n-d_n+d_{n-1}$, $n \ge 0$.
Prove that $(c_n)^3=d_{3n}$ for all $n$.