Prove \cos Formulas: \frac{\pi}{7}, \frac{2\pi}{7}, \frac{3\pi}{7} & General Sum

  • MHB
  • Thread starter Jameson
  • Start date
In summary, the cosine formulas for the angles \frac{\pi}{7}, \frac{2\pi}{7}, and \frac{3\pi}{7} are derived using trigonometric identities and the half-angle formula for cosine. These formulas can be used to find the cosine of any multiple of \frac{\pi}{7}, and there are similar formulas for other special angles such as \frac{\pi}{3}, \frac{\pi}{4}, and \frac{\pi}{6}. Additionally, there is a general sum formula for cosine that can be used to find the cosine of any sum of angles, including the angles mentioned previously.
  • #1
Jameson
Gold Member
MHB
4,541
13
Show that \(\displaystyle \cos \left( \frac{\pi}{7} \right)-\cos \left( \frac{2\pi}{7} \right)+\cos \left( \frac{3\pi}{7} \right)=\frac{1}{2}\)

Bonus: [sp]Show that the general form of \(\displaystyle \sum_{i=1}^{n}\cos \left( \frac{(2i-1)\pi}{2n+1} \right)\) is always one-half.[/sp]
--------------------
 
Last edited:
Physics news on Phys.org
  • #2
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone

Solution (from anemone): [sp]Let $\displaystyle P=\cos\frac{\pi}{7}-\cos\frac{2\pi}{7}+\cos\frac{3\pi}{7}$

Multiply the left and right side of the equation above by $\displaystyle 2\sin\frac{\pi}{7}$, we get:

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=2\sin\frac{\pi}{7}\cos\frac{ \pi }{7}-2\sin\frac{\pi}{7}\cos\frac{2\pi}{7}+2\sin\frac{ \pi}{7}\cos\frac{3\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{2 \pi}{7}-\left(\sin\frac{3\pi}{7}-\sin\frac{\pi}{7}\right)+\left(\sin\frac{4\pi}{7}-\sin\frac{2\pi}{7}\right)$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{4\pi}{7}-\sin\frac{3\pi}{7}-\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\left(\pi-\frac{3\pi}{7}\right)-\sin\frac{3\pi}{7}+\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{3\pi}{7}-\sin\frac{3\pi}{7}+\sin\frac{\pi}{7}$

$\displaystyle \left(2\sin\frac{\pi}{7}\right)P=\sin\frac{\pi}{7}$

$\displaystyle P=\frac{1}{2}$, i.e.

$\displaystyle \cos\frac{\pi}{7}-\cos\frac{2\pi}{7}+\cos\frac{3\pi}{7}=\frac{1}{2}$[/sp]

Bonus (from MarkFL): [sp]$\displaystyle \sum_{i=1}^{n}\cos \left( \frac{(2i-1)\pi}{2n+1} \right)=\frac{1}{2}$

Using the identity $\cos(\pi-\theta)=-\cos(\theta)$, the left side becomes:

$\displaystyle -\sum_{i=1}^{n}\cos \left( \frac{2(n+1-i)\pi}{2n+1} \right)$

Multiplying by $\displaystyle 1=\frac{2\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$ we obtain:

$\displaystyle -\frac{1}{2\sin\left(\frac{2\pi}{2n+1} \right)}\sum_{i=1}^{n}2\sin\left(\frac{2\pi}{2n+1} \right)\cos \left( \frac{2(n+1-i)\pi}{2n+1} \right)$

Using the identities $2\sin(\alpha)\cos(\beta)=\sin(\alpha+\beta)+\sin(\alpha-\beta)$ and $sin(-\theta)=-\sin(\theta)$ the sum becomes:

$\displaystyle -\frac{1}{2\sin\left(\frac{2\pi}{2n+1} \right)}\sum_{i=1}^{n}\left[\sin\left(\frac{2\pi(n+2-i)}{2n+1} \right)-\sin\left(\frac{2\pi(n-i)}{2n+1} \right) \right]$

Discarding all the terms that add to zero in the telescoping series, we are left with:

$\displaystyle -\frac{\sin\left(\frac{2\pi(n+1)}{2n+1} \right)+\sin\left(\frac{2\pi n}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Using the identity $\sin(\pi-\theta)=\sin(\theta)$ on the first two terms in the numerator, we have:

$\displaystyle -\frac{\sin\left(-\frac{\pi}{2n+1} \right)+\sin\left(\frac{\pi}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Using the identity $\sin(-\theta)=-\sin(\theta)$ on the first term in the numerator this becomes:

$\displaystyle -\frac{-\sin\left(\frac{\pi}{2n+1} \right)+\sin\left(\frac{\pi}{2n+1} \right)-\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Collect like terms and distribute negative sign:

$\displaystyle \frac{\sin\left(\frac{2\pi}{2n+1} \right)}{2\sin\left(\frac{2\pi}{2n+1} \right)}$

Reduce:

$\displaystyle \frac{1}{2}$[/sp]
 

FAQ: Prove \cos Formulas: \frac{\pi}{7}, \frac{2\pi}{7}, \frac{3\pi}{7} & General Sum

What are the cosine formulas for the angles \frac{\pi}{7}, \frac{2\pi}{7}, and \frac{3\pi}{7}?

The cosine formulas for these angles are:
For \frac{\pi}{7}: \cos(\frac{\pi}{7}) = \frac{\sqrt{7 + \sqrt{21}}}{4}
For \frac{2\pi}{7}: \cos(\frac{2\pi}{7}) = -\frac{\sqrt{7 - \sqrt{21}}}{4}
For \frac{3\pi}{7}: \cos(\frac{3\pi}{7}) = -\frac{\sqrt{7 + \sqrt{21}}}{4}

How were these cosine formulas derived?

These cosine formulas were derived using the method of trigonometric identities and the half-angle formula for cosine. The specific steps and calculations can be found in a trigonometry textbook or online resources.

Can these cosine formulas be used to find the cosine of other angles?

Yes, these cosine formulas can be used to find the cosine of any angle that is a multiple of \frac{\pi}{7}. For example, the cosine of \frac{5\pi}{7} can be found using the formula for \frac{3\pi}{7} as follows:
\cos(\frac{5\pi}{7}) = \cos(\frac{3\pi}{7} + \frac{2\pi}{7}) = \cos(\frac{3\pi}{7})\cos(\frac{2\pi}{7}) - \sin(\frac{3\pi}{7})\sin(\frac{2\pi}{7}) = (-\frac{\sqrt{7 + \sqrt{21}}}{4})(-\frac{\sqrt{7 - \sqrt{21}}}{4}) - (-\frac{\sqrt{7 + \sqrt{21}}}{4})(\frac{\sqrt{7 - \sqrt{21}}}{4}) = \frac{1}{4}

Are there any other special angles for which similar cosine formulas can be derived?

Yes, there are other special angles for which similar cosine formulas can be derived, such as \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{6}, etc. These formulas are commonly used in trigonometry and can be found in textbooks or online resources.

Is there a general sum formula for cosine?

Yes, there is a general sum formula for cosine, which is:
\cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b)
This formula can be used to find the cosine of any sum of angles, including the angles \frac{\pi}{7}, \frac{2\pi}{7}, and \frac{3\pi}{7} mentioned previously.

Back
Top