MHB Prove Divisibility: $(x-y)^2+(y-z)^2+(z-x)^2=xyz$ yields $x^3+y^3+z^3$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be integers such that $(x-y)^2+(y-z)^2+(z-x)^2=xyz$, prove that $x^3+y^3+z^3$ is divisible by $x+y+z+6$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be integers such that $(x-y)^2+(y-z)^2+(z-x)^2=xyz$, prove that $x^3+y^3+z^3$ is divisible by $x+y+z+6$.

We know $x^3+y^3+z^3 - 3xyz = \frac{1}{2}(x+y+z)((x-y)^2 + (y-z)^2 + (z-x)^2)$

Hence $x^3+y^3+z^3 = 3xyz + \frac{1}{2}(x+y+z)((x-y)^2 + (y-z)^2 + (z-x)^2)$

Hence $x^3+y^3+z^3 = 3xyz + \frac{1}{2}(x+y+z)(xyz)$ (putting the value from given condition)

Or $x^3+y^3+z^3 = xyz( 3 + \frac{1}{2}(x+y+z))$

Or $x^3+y^3+z^3 = \frac{xyz}{2}( 6 + x+y+z)$

If we can prove that xyz is even then we are through

As (x-y), (y-z) and (z-x) sum to give zero so atleast one of them is even. So xyz is even from the given condition so $\frac{xyz}{2}$ is an integer and hence $x^3+y^3+z^3$ is multiple of $(6 + x+y+z)$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top