- #1
bkarpuz
- 12
- 0
Dear MHB members,
Suppose that $p,f$ are locally essentially bounded Lebesgue measurable functions and consider the differential equation
$x'(t)=p(t)x(t)+f(t)$ almost for all $t\geq t_{0}$, and $x(t_{0})=x_{0}$.
By a solution of this equation, we mean a function $x$,
which is absolutely continuous in $[t_{0},t_{1}]$ for all $t_{1}\geq t_{0}$,
and satisfies the differential equation almost for all $t\geq t_{0}$ and $x(t_{0})=x_{0}$.
How can I prove existence and uniqueness in the sense of almost everywhere of solutions to this problem?
Thanks.
bkarpuz
Suppose that $p,f$ are locally essentially bounded Lebesgue measurable functions and consider the differential equation
$x'(t)=p(t)x(t)+f(t)$ almost for all $t\geq t_{0}$, and $x(t_{0})=x_{0}$.
By a solution of this equation, we mean a function $x$,
which is absolutely continuous in $[t_{0},t_{1}]$ for all $t_{1}\geq t_{0}$,
and satisfies the differential equation almost for all $t\geq t_{0}$ and $x(t_{0})=x_{0}$.
How can I prove existence and uniqueness in the sense of almost everywhere of solutions to this problem?
Thanks.
bkarpuz
Last edited: