- #1
Potatochip911
- 318
- 3
Homework Statement
So as the title says I'm supposed to prove ##f^{-1}(G\cap H)=f^{-1}(G)\cap f^{-1}(H)##
Homework Equations
3. The Attempt at a Solution [/B]
I've been doing a lot of proofs for my class lately and just wanted to make sure that I'm at least doing one of them correctly so I would appreciate it if someone could tell me whether or not this is correct.
1) Let ##x\in f^{-1}(G\cap H)## then ##\exists y\in (G\cap H)## such that ##y=f(x)## so ##y\in G## and ##y\in H## therefore ##x\in f^{-1}(G)## and ##x\in f^{-1}(H)## so ##x\in f^{-1}(G)\cap f^{-1}(H)## which implies ##f^{-1}(G\cap H)\subseteq f^{-1}(G)\cap f^{-1}(H)##
2) Let ##x\in f^{-1}(G)\cap f^{-1}(H)##, so ##x\in f^{-1}(G)## and ##x\in f^{-1}(H)##. ##\exists a\in G## such that ##a=f(x)## and ##\exists b\in H## such that ##b=f(x)##, since ##a=b##; ##a\in G\cap H## so ##x\in f^{-1}(G\cap H)## which implies ##f^{-1}(G)\cap f^{-1}(H)\subseteq f^{-1}(G\cap H)##
From 1) and 2) we have that ##f^{-1}(G\cap H)=f^{-1}(G)\cap f^{-1}(H)##