MHB Prove Identity: (1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x)

  • Thread starter Thread starter Sean1
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion focuses on proving the trigonometric identity (1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x). A user seeks assistance in transforming the left-hand side into a non-fractional expression, suggesting the use of the conjugate to simplify the equation. They propose multiplying by (1+sin(x)) to eliminate the denominator. Another participant confirms that this approach is correct and encourages further exploration of the transformation. The conversation emphasizes collaborative problem-solving in trigonometric identities.
Sean1
Messages
5
Reaction score
0
I cannot seem to prove the following identity

(1+sin(x))/(1-sin(x))=2tan^2(x)+1+2tan(x)sec(x)

Can you assist?
 
Mathematics news on Phys.org
Hi Sean,

Let's start with the left-hand side.

$$\frac{1+\sin(x)}{1-\sin(x)}$$.

We want this to turn into an expression without a fraction, so maybe we can try getting rid of the denominator somehow. When I see something in the form of $a-b$, I often try multiplying by the conjugate $a+b$.

$$\frac{1+\sin(x)}{1-\sin(x)} \left( \frac{1+\sin(x)}{1+\sin(x)} \right) $$

What do you get after trying this?
 
Thanks for getting me started.

This is my working. Can you confirm my approach is correct?

View attachment 4467
 

Attachments

  • identity solution.PNG
    identity solution.PNG
    2.9 KB · Views: 141
Last edited:
Looks good! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top