MHB Prove Identity: $b_1x^3=b_2y^3=b_3z^3$ & $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion centers on proving the identity involving the equations $b_1x^3 = b_2y^3 = b_3z^3$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Participants are tasked with demonstrating that $\sqrt[3]{b_1x^2 + b_2y^2 + b_3z^2} = \sqrt[3]{b_1} + \sqrt[3]{b_2} + \sqrt[3]{b_3}$. The conversation includes attempts to manipulate the given equations to arrive at the desired result. The proof requires a solid understanding of algebraic manipulation and properties of cube roots. Overall, the focus is on establishing the validity of the proposed identity through mathematical reasoning.
Albert1
Messages
1,221
Reaction score
0
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$
 
Last edited:
Mathematics news on Phys.org
Re: prove the indentity

Albert said:
(1):
$b_1x^3=b_2y^3=b_3z^3$
(2):
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1$
prove:
$\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}$

Hello.

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=

=\sqrt[3]{\frac{b_1x^3}{x}+\frac{b_2y^3}{y}+\frac{b_3z^3}{z}}=

=\sqrt[3]{\frac{b_2y^3}{x}+\frac{b_2y^3}{y}+\frac{b_2y^3}{z}}=

=y \sqrt[3]{b_2} \sqrt[3]{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}= y \sqrt[3]{b_2} (*)

\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}= \dfrac{\sqrt[3]{b_1}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_2}}{y \sqrt[3]{b_2}}+\dfrac{\sqrt[3]{b_3}}{y \sqrt[3]{b_2}}=1 \rightarrow{}

\rightarrow{} \sqrt[3]{b_1}+\sqrt[3]{b_2}+\sqrt[3]{b_3}=y \sqrt[3]{b_2} (**)

For (*) and (**):

\sqrt[3]{b_1x^2+b_2y^2+b_3z^2}=\sqrt[3] {b_1}+\sqrt[3] {b_2} + \sqrt[3] {b_3}

Regards.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top