- #1
John112
- 19
- 0
To prove: (1 + 2 + 4 + . . . + [itex]2^{n}[/itex]) + 1 = [itex]2^{n+1}[/itex] , ∀n ≥ 0 .
Basis Step n = 0: LEFT HAND SIDE: ([itex]2^{0}[/itex])+ 1 = 1 + 1 = 2 RIGHT HAND SIDE [itex]2^{0}[/itex] + 1 = 2
Inductive Step: Assume (1 + 2 + 4 + . . . + [itex]2^{k}[/itex]) + 1 = [itex]2^{k+1}[/itex]
Then (1 + 2 + 4 + . . . + [itex]2^{k}[/itex] + [itex]2^{k+1}[/itex]) + 1 = [itex]2^{k+1}[/itex] + [itex]2^{k+1}[/itex] + 1 = [itex]2^{k+2}[/itex] + 1.
Is this proof right? This is a proof given to one of the example problems in the book. To me it seems wrong. If it is right then can someone explain how the +1 came to be at the end ( [itex]2^{k+2}[/itex] + 1).
Isn't the above proof should be like this?
so (1 + 2 + 4 + . . . + [itex]2^{k}[/itex] + [itex]2^{k+1}[/itex]) + 1 = [itex]2^{k+1}[/itex] + [itex]2^{k+1}[/itex] = [itex]2^{k+2}[/itex]
Because (1 + 2 + 4 + . . . + [itex]2^{k}[/itex] + [itex]2^{k+1}[/itex]) + 1 can be rewritten as
[(1 + 2 + 4 + . . . + [itex]2^{k}[/itex]) + 1] + [itex]2^{k+1}[/itex] by commutative property of addition. From the inductive step we assumed that (1 + 2 + 4 + . . . + [itex]2^{k}[/itex]) + 1 = [itex]2^{k+1}[/itex]
[(1 + 2 + 4 + . . . + [itex]2^{k}[/itex]) + 1] + [itex]2^{k+1}[/itex] = [itex]2^{k+1}[/itex] + [itex]2^{k+1}[/itex] = [itex]2^{k+2}[/itex]
Basis Step n = 0: LEFT HAND SIDE: ([itex]2^{0}[/itex])+ 1 = 1 + 1 = 2 RIGHT HAND SIDE [itex]2^{0}[/itex] + 1 = 2
Inductive Step: Assume (1 + 2 + 4 + . . . + [itex]2^{k}[/itex]) + 1 = [itex]2^{k+1}[/itex]
Then (1 + 2 + 4 + . . . + [itex]2^{k}[/itex] + [itex]2^{k+1}[/itex]) + 1 = [itex]2^{k+1}[/itex] + [itex]2^{k+1}[/itex] + 1 = [itex]2^{k+2}[/itex] + 1.
Is this proof right? This is a proof given to one of the example problems in the book. To me it seems wrong. If it is right then can someone explain how the +1 came to be at the end ( [itex]2^{k+2}[/itex] + 1).
Isn't the above proof should be like this?
so (1 + 2 + 4 + . . . + [itex]2^{k}[/itex] + [itex]2^{k+1}[/itex]) + 1 = [itex]2^{k+1}[/itex] + [itex]2^{k+1}[/itex] = [itex]2^{k+2}[/itex]
Because (1 + 2 + 4 + . . . + [itex]2^{k}[/itex] + [itex]2^{k+1}[/itex]) + 1 can be rewritten as
[(1 + 2 + 4 + . . . + [itex]2^{k}[/itex]) + 1] + [itex]2^{k+1}[/itex] by commutative property of addition. From the inductive step we assumed that (1 + 2 + 4 + . . . + [itex]2^{k}[/itex]) + 1 = [itex]2^{k+1}[/itex]
[(1 + 2 + 4 + . . . + [itex]2^{k}[/itex]) + 1] + [itex]2^{k+1}[/itex] = [itex]2^{k+1}[/itex] + [itex]2^{k+1}[/itex] = [itex]2^{k+2}[/itex]
Last edited: