MHB Prove Inequality: $18<\sum\limits_{i=2}^{99}\dfrac 1{\sqrt i} <19$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The discussion focuses on proving the inequality $18 < \sum_{i=2}^{99} \frac{1}{\sqrt{i}} < 19$. Participants explore the implications of the inequality, particularly how it relates to the expressions $\sqrt{n+1} + \sqrt{n} > 2\sqrt{n}$ and $\sqrt{n-1} + \sqrt{n} < 2\sqrt{n}$. The reciprocal forms of these inequalities are also examined, leading to the conclusion that $\frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} < \frac{1}{\sqrt{n-1} + \sqrt{n}}$. The thread emphasizes the validity and effectiveness of the proposed solutions. Overall, the discussion provides a thorough mathematical exploration of the inequality.
Albert1
Messages
1,221
Reaction score
0
prove :
$18<1+\dfrac {1}{\sqrt 2}+\dfrac {1}{\sqrt 3}+----+\dfrac{1}{\sqrt {99}}<19$
 
Mathematics news on Phys.org
we have
$n+ 1 \gt n\gt n-1$

hence$\sqrt{n+1} + \sqrt{n}> 2 \sqrt{n} > \sqrt{n-1}+ \sqrt{n}$

hence taking reciprocal
$\dfrac{1}{\sqrt{n+1} + \sqrt{n}}<\dfrac{1}{ 2 \sqrt{n}} < \dfrac{1}{\sqrt{n-1}+ \sqrt{n}} $

or
$\sqrt{n+1} - \sqrt{n}< \dfrac{1}{ 2 \sqrt{n}} < \sqrt{n}- \sqrt{n-1}$

using the above we get the telescopic sum we get
the result
 
Last edited:
hence$\sqrt{n+1} + \sqrt{n}> 2 \sqrt{n} > \sqrt{n-1}+ \sqrt{n}$

taking reciprocal it should be:
$\dfrac{1}{\sqrt{n+1} + \sqrt{n}}<\dfrac{1}{ 2 \sqrt{n}} < \dfrac{1}{\sqrt{n-1}+ \sqrt{n}} $

or
$\sqrt{n+1} - \sqrt{n}< \dfrac{1}{ 2 \sqrt{n}} < \sqrt{n}- \sqrt{n-1}$

a very good solution !
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top