MHB Prove Inequality: $\sqrt{1+\sqrt{2+...+\sqrt{2006}}} < 2$

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Inequality
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that$\sqrt{1+\sqrt{2+\sqrt{3+...+\sqrt{2006}}}}<2.$
 
Mathematics news on Phys.org
lfdahl said:
Prove, that$\sqrt{1+\sqrt{2+\sqrt{3+...+\sqrt{2006}}}}<2.$

My Solution:

we have
$n = \sqrt{n^2} = \sqrt{n+n^2-n}\cdots(1)$
for $n>2$ $n^2-n > n > \sqrt{n+1}$ as $n^2 > 2n > n+1$
from above 2 we get
$n > \sqrt{n+\sqrt{n+1}}\cdots(1)$ for n > 2
for n = 2 we have $2 = \sqrt{2 + 2} = \sqrt{2 +\sqrt{3}}$ so for 2 also (1) holds

we have $2= \sqrt{1+3} > \sqrt{1 + 2} > \sqrt{1 + \sqrt{2 + \sqrt{3}}}$
applying (1) repeatedly until n = 2005 we get the result.
 
kaliprasad said:
My Solution:

we have
$n = \sqrt{n^2} = \sqrt{n+n^2-n}\cdots(1)$
for $n>2$ $n^2-n > n > \sqrt{n+1}$ as $n^2 > 2n > n+1$
from above 2 we get
$n > \sqrt{n+\sqrt{n+1}}\cdots(1)$ for n > 2
for n = 2 we have $2 = \sqrt{2 + 2} = \sqrt{2 +\sqrt{3}}$ so for 2 also (1) holds

we have $2= \sqrt{1+3} > \sqrt{1 + 2} > \sqrt{1 + \sqrt{2 + \sqrt{3}}}$
applying (1) repeatedly until n = 2005 we get the result.

What a nice solution! Thankyou for your participation, kaliprasad!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top