MHB Prove Inequality: $\sqrt{ab}+\sqrt{cd}\le \sqrt{(a+d)(b+c)}$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that for positive reals $a,\,b,\,c,\,d$, $\sqrt{ab}+\sqrt{cd}\le \sqrt{(a+d)(b+c)}$.
 
Mathematics news on Phys.org
We have:

$$\sqrt{ab} + \sqrt{cd} \leq \sqrt{(a+d)(b+c)} \\\\
\left ( \sqrt{ab} + \sqrt{cd}\right )^2 \leq \left ( \sqrt{ab + ac + bd + cd} \right )^2
\\\\ab + cd + 2\sqrt{ab}\sqrt{cd}\leq ab + ac + bd + cd
\\\\ac + bd - 2\sqrt{ab}\sqrt{cd}\geq 0
\\\\\left ( \sqrt{ac} \right )^2 + \left ( \sqrt{bd} \right )^2-2\sqrt{ac}\sqrt{bd}\geq 0
\\\\\left ( \sqrt{ac}-\sqrt{bd} \right )^2 \geq 0. $$

Thus the inequality holds.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top