- #1
objectivesea
- 6
- 0
Homework Statement
Prove that if [tex] |x-x_0| < \textrm{min} \bigg ( \frac{\epsilon}{2|y_0|+1},1 \bigg )[/tex] and [tex]|y-y_0| < \frac{\epsilon}{2|x_0|+1}[/tex] then [tex]xy-x_0y_0<\epsilon[/tex]
Homework Equations
We can use basic algebra and the following axioms:
For any number [tex]a[/tex], one and only one of the following holds:
(i) [tex]a=0[/tex]
(ii) [tex]a[/tex] is in the collection [tex]P[/tex]
(iii) [tex]-a[/tex] is in the collection [tex]P[/tex]
Note: A number [tex]n[/tex] is the collection [tex]P[/tex] if and only if [tex]n>0[/tex]
If [tex]a[/tex] and [tex]b[/tex] are in [tex]P[/tex], then [tex]a+b[/tex] is in [tex]P[/tex].
If [tex]a[/tex] and [tex]b[/tex] are in [tex]P[/tex], then [tex] a \cdot b [/tex] is in P.
We may also use the following consequences of the above axioms:
For any numbers [tex]a[/tex]and [tex]b[/tex], one and only one of the following holds:
(i) [tex]a=b[/tex]
(ii) [tex]a < b[/tex]
(iii)[tex] a > b[/tex]
For any numbers [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex], if [tex]a<b[/tex] and [tex]b<c[/tex], then [tex]a<c[/tex].
For any numbers [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex], if [tex]a<b[/tex], then [tex]a+c<b+c[/tex].
For any numbers [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex], if [tex]a<b[/tex] and [tex]0<c[/tex], then [tex]ac<bc[/tex].
The Attempt at a Solution
I'm not even sure where to start.