- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
With use of algebra I want to prove the Lagrange property:For any real numbers $x_1, \dots, x_n$ and $y_1, \dots, y_n$, $$\left( \sum_{i=1}^n x_i y_i\right)^2=\left(\sum_{i=1}^n x_i^2 \right)\left(\sum_{i=1}^n y_i^2 \right)- \sum_{i<j} (x_i y_j-x_j y_i)^2$$
Could you give me a hint how we could show the above property?
With use of algebra I want to prove the Lagrange property:For any real numbers $x_1, \dots, x_n$ and $y_1, \dots, y_n$, $$\left( \sum_{i=1}^n x_i y_i\right)^2=\left(\sum_{i=1}^n x_i^2 \right)\left(\sum_{i=1}^n y_i^2 \right)- \sum_{i<j} (x_i y_j-x_j y_i)^2$$
Could you give me a hint how we could show the above property?