- #1
ognik
- 643
- 2
I'm given that $ \frac{f\left({x}_{o}\right)}{g\left({x}_{o}\right)} =\frac{0}{0} $ and asked to show that:
$ \lim_{{x}\to{{x}_{0}}}\frac{f\left({x}\right)}{g\left({x}\right)} = \lim_{{x}\to{{x}_{0}}} \frac{f^{'} \left({x}\right)}{g^{'}\left({x}\right)} $
This should be easy, but I suspect I've not got it quite right. Using Taylor (not Maclauren):
$ f\left(x\right) =f\left({x}_{0}\right) + {f}^{'}\left({x}_{0}\right)\left(x - {x}_{0}\right) + {f}^{''}\frac{\left(x-{x}_{0}\right)^2}{2!} + ... $
1) Am I correct to be able to ignore terms in $ x^2 $ and higher powers - because $ \left(x-{x}_{0}\right) $ is very small in the limit?
Then I get $ \lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} $
2) Can I argue, by 'reversing' $ _{{x}\to{{x}_{0}}} $, to let $ \lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}\right)} {{g}^{'}\left({x}\right)} $
I get the feeling what I've done is clumsy and there is a better way?
Thanks for reading
$ \lim_{{x}\to{{x}_{0}}}\frac{f\left({x}\right)}{g\left({x}\right)} = \lim_{{x}\to{{x}_{0}}} \frac{f^{'} \left({x}\right)}{g^{'}\left({x}\right)} $
This should be easy, but I suspect I've not got it quite right. Using Taylor (not Maclauren):
$ f\left(x\right) =f\left({x}_{0}\right) + {f}^{'}\left({x}_{0}\right)\left(x - {x}_{0}\right) + {f}^{''}\frac{\left(x-{x}_{0}\right)^2}{2!} + ... $
1) Am I correct to be able to ignore terms in $ x^2 $ and higher powers - because $ \left(x-{x}_{0}\right) $ is very small in the limit?
Then I get $ \lim_{{x}\to{{x}_{0}}} \frac{f\left({x}\right)}{g\left({x}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)\left(x-{x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} $
2) Can I argue, by 'reversing' $ _{{x}\to{{x}_{0}}} $, to let $ \lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}_{0}\right)} {{g}^{'}\left({x}_{0}\right)} =
\lim_{{x}\to{{x}_{0}}} \frac{{f}^{'}\left({x}\right)} {{g}^{'}\left({x}\right)} $
I get the feeling what I've done is clumsy and there is a better way?
Thanks for reading