- #1
blahblah8724
- 32
- 0
Homework Statement
Using [itex] C_R [/itex] as,
([itex] C_R [/itex] doesn't include the bottom line between R and -R)
Prove that,
[itex] \lim_{R \to \infty} \int_{C_R} \frac{1}{(z+i)^2} dz = 0 [/itex]
2. The attempt at a solution
Using the estimation lemma and trying to find a bound on [itex] \frac{1}{(z+i)^2} [/itex]
So if [itex] |z| = R [/itex] then,
[itex] |(z + i)^2| = (|z+i|)^2 \geq (|z| - |i| )^2 = (|z| - 1)^2 = (R - 1)^2 [/itex]
>>>(Not sure of the integrity of this step)
Thus,
[itex] \frac{1}{(z+i)^2} \leq \frac{1}{(R - 1)^2} [/itex]
So using estimation lemma and the fact that arclength of [itex] C_R [/itex] is [itex] \pi R [/itex] then,
[itex] \left| \int_{C_R} \frac{1}{(z+i)^2} dz \right| \leq \int_{C_R} \left|\frac{1}{(z+i)^2} \right| |dz| \leq \frac{\pi R}{(R-1)^2} \to 0 [/itex] as [itex] R \to \infty [/itex]