- #1
CGandC
- 326
- 34
- Homework Statement
- Theorem: Given the continuous functions ## f,g : [ 1, +\infty ) \to \mathbb{R} ## that satisfy ##\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=L>0##. Prove the improper integrals ## \int_1^{+\infty} f(x)dx , \int_1^{+\infty} g(x)dx ## converge or diverge together.
- Relevant Equations
- * ( Integral comparison ) Let ## f,g : [ a,\omega) \to \mathbb{R} ## ( where ## \omega \in \mathbb{R} ## or ## \omega = \infty ## ). Suppose for all ## b < \omega ## it occurs that ## f,g \in \mathbb{R([a,b])} ##. Suppose ## 0 \leq f \leq g ##. If ## \int_a^\omega g < \infty ## then also ## \int_a^\omega f < \infty ##, and if ## \int_a^\omega f = \infty ## then ## \int_a^\omega g = \infty ## .
* ## f \in R([ a,b]) ## means ## f ## is Riemann-Integrable on ## [ a,b] ##
Attempt:
Note we must have that
## f>0 ## and ## g>0 ## from some place
or
## f<0 ## and ## g<0 ## from some place
or
## g ,f ## have the same sign in ## [ 1, +\infty) ##.
Otherwise, we'd have that there are infinitely many ##x's ## where ##g,f ## differ and sign so we can chose a sequence ## 1<x_n \to \infty ## s.t. ## \lim _{n \rightarrow+\infty} \frac{f(x_n)} {g(x_n)}<0## , a contradiction to the given ##\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=L>0 ##.
Suppose ## f>0 ## and ## g>0 ## from some place ( proof for ## f<0 ## and ## g < 0 ## from someplace or proof for the case where ## g,f ## have same sign in ## [1, +\infty ) ## are very similar
).
From the given ## \lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=L>0 ## we can say that ## \forall \epsilon>0 . \exists R>0 . \forall x>R . | \frac{f(x)}{g(x)} - L | < \epsilon ##.
Note that ## -\epsilon < \frac{f(x)}{g(x)} - L < \epsilon \longrightarrow
L - \epsilon < \frac{f(x)}{g(x)} < L + \epsilon \longrightarrow (L-\epsilon)g(x) < f(x) ##.
Hence, for ## \epsilon = \frac{L}{2} ## there exists ## R>0 ## s.t. for all ## x>R ## we have that ## (L-\epsilon)g(x) = \frac{L}{2} g(x) < f(x) ##.
Suppose without loss of generality that ## R>1 ##.
Suppose that ## \int_1^{+\infty} f(x)dx ## converges and we'll show that ## \int_1^{+\infty} g(x)dx ## converges ( proving that if ##\int_1^{+\infty} g(x)dx## converges then ## \int_1^{+\infty} f(x)dx ## converges is similar if we look at ## f(x) < ( L + \epsilon) g(x) ## ) .
Under the new assumption, note that ## \int_R^{+\infty} f(x)dx > \frac{L}{2} \int_R^{+\infty} g(x) dx ##, hence from comparison test for integrals ## \int_R^{+\infty} g(x) dx ## exists.
Now, note that ## \int_1^{+\infty} g(x)dx = \int_1^{R} g(x)dx + \int_R^{+\infty} g(x)dx ##, Hence ## \int_R^{+\infty} g(x)dx = \int_1^{+\infty} g(x)dx - \int_1^{R} g(x)dx ## and since ## \int_R^{+\infty} g(x) dx ## exists then these two integrals also exist, hence ## \int_1^{+\infty} g(x)dx ## exists.
( After proving that if ##\int_1^{+\infty} g(x)dx## converges then ## \int_1^{+\infty} f(x)dx ## converges, we proved that ##\int_1^{+\infty} g(x)dx ~ \text{ converges} \iff \int_1^{+\infty} f(x)dx ~ \text{converges} ##. Hence we also proved ##\int_1^{+\infty} g(x)dx ~\text{ diverges} \iff \int_1^{+\infty} f(x)dx ~ \text{diverges} ## )
## \square ##There are couple of things that I have questions about:
1. Where have I used the fact that ##f,g ## are continuous? It seems like I proved the theorem without using this given.
( I know if a function is continuous on a bounded interval the it is Riemann Integrable on that interval, but It seems to me that under the assumption that ## \int_1^{+\infty} f(x)dx ## converges, the assumption that ##f,g ## are continuous is necessary in-order to say that ##g ## is Riemann Integrable on ## [1,\infty) ## , hence I could perform the integrable ##\int_1^{+\infty} g(x)dx ## in the inequality ## \int_R^{+\infty} f(x)dx > \frac{L}{2} \int_R^{+\infty} g(x) dx ## )
2. Was I right that the cases " ## f,g> 0 ## from some place or ##f,g< 0 ## from some place or ## g,f ## have the same sign in ## [1,+\infty) ## " are the all the possible cases?
3. I think that the proofs for the other cases ( besides " ## f,g> 0 ## from some place " ) are very similar for all the cases I have written, is that right?
4. what do you think about the proof? Is it specious? if so, then why? if not, then what could be done better?
Note we must have that
## f>0 ## and ## g>0 ## from some place
or
## f<0 ## and ## g<0 ## from some place
or
## g ,f ## have the same sign in ## [ 1, +\infty) ##.
Otherwise, we'd have that there are infinitely many ##x's ## where ##g,f ## differ and sign so we can chose a sequence ## 1<x_n \to \infty ## s.t. ## \lim _{n \rightarrow+\infty} \frac{f(x_n)} {g(x_n)}<0## , a contradiction to the given ##\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=L>0 ##.
Suppose ## f>0 ## and ## g>0 ## from some place ( proof for ## f<0 ## and ## g < 0 ## from someplace or proof for the case where ## g,f ## have same sign in ## [1, +\infty ) ## are very similar
).
From the given ## \lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=L>0 ## we can say that ## \forall \epsilon>0 . \exists R>0 . \forall x>R . | \frac{f(x)}{g(x)} - L | < \epsilon ##.
Note that ## -\epsilon < \frac{f(x)}{g(x)} - L < \epsilon \longrightarrow
L - \epsilon < \frac{f(x)}{g(x)} < L + \epsilon \longrightarrow (L-\epsilon)g(x) < f(x) ##.
Hence, for ## \epsilon = \frac{L}{2} ## there exists ## R>0 ## s.t. for all ## x>R ## we have that ## (L-\epsilon)g(x) = \frac{L}{2} g(x) < f(x) ##.
Suppose without loss of generality that ## R>1 ##.
Suppose that ## \int_1^{+\infty} f(x)dx ## converges and we'll show that ## \int_1^{+\infty} g(x)dx ## converges ( proving that if ##\int_1^{+\infty} g(x)dx## converges then ## \int_1^{+\infty} f(x)dx ## converges is similar if we look at ## f(x) < ( L + \epsilon) g(x) ## ) .
Under the new assumption, note that ## \int_R^{+\infty} f(x)dx > \frac{L}{2} \int_R^{+\infty} g(x) dx ##, hence from comparison test for integrals ## \int_R^{+\infty} g(x) dx ## exists.
Now, note that ## \int_1^{+\infty} g(x)dx = \int_1^{R} g(x)dx + \int_R^{+\infty} g(x)dx ##, Hence ## \int_R^{+\infty} g(x)dx = \int_1^{+\infty} g(x)dx - \int_1^{R} g(x)dx ## and since ## \int_R^{+\infty} g(x) dx ## exists then these two integrals also exist, hence ## \int_1^{+\infty} g(x)dx ## exists.
( After proving that if ##\int_1^{+\infty} g(x)dx## converges then ## \int_1^{+\infty} f(x)dx ## converges, we proved that ##\int_1^{+\infty} g(x)dx ~ \text{ converges} \iff \int_1^{+\infty} f(x)dx ~ \text{converges} ##. Hence we also proved ##\int_1^{+\infty} g(x)dx ~\text{ diverges} \iff \int_1^{+\infty} f(x)dx ~ \text{diverges} ## )
## \square ##There are couple of things that I have questions about:
1. Where have I used the fact that ##f,g ## are continuous? It seems like I proved the theorem without using this given.
( I know if a function is continuous on a bounded interval the it is Riemann Integrable on that interval, but It seems to me that under the assumption that ## \int_1^{+\infty} f(x)dx ## converges, the assumption that ##f,g ## are continuous is necessary in-order to say that ##g ## is Riemann Integrable on ## [1,\infty) ## , hence I could perform the integrable ##\int_1^{+\infty} g(x)dx ## in the inequality ## \int_R^{+\infty} f(x)dx > \frac{L}{2} \int_R^{+\infty} g(x) dx ## )
2. Was I right that the cases " ## f,g> 0 ## from some place or ##f,g< 0 ## from some place or ## g,f ## have the same sign in ## [1,+\infty) ## " are the all the possible cases?
3. I think that the proofs for the other cases ( besides " ## f,g> 0 ## from some place " ) are very similar for all the cases I have written, is that right?
4. what do you think about the proof? Is it specious? if so, then why? if not, then what could be done better?