- #1
complexnumber
- 62
- 0
Homework Statement
Prove using limit definition [tex]$\lim_{z \to z_0} (z^2 + c) = z_0^2 +
c$[/tex].
Homework Equations
The Attempt at a Solution
For every [tex]$\varepsilon$[/tex] there should be a [tex]$\delta$[/tex] such that
[tex]
\begin{align*}
\text{if and only if } 0 < |z - z_0| < \delta \text{ then } |(z^2 + c) -
(z_0^2 + c)| < \varepsilon
\end{align*}
[/tex]
Starting from [tex]$ |(z^2 + c) - (z_0^2 + c)| < \varepsilon$[/tex]
[tex]
\begin{align*}
|(z^2 + c) - (z_0^2 + c)| = |z^2 - z_0^2| = |(z+z_0)(z-z_0)| <
\varepsilon
\end{align*}
[/tex]
How can I continue from here?