- #1
HLUM
- 3
- 0
1. Let a0 and a1 be positive real numbers, and set an+2 = sqrt(an+1) + sqrt(an) for n [tex]\geq[/tex] 0.
(a) Show that there is N such that for all n [tex]\geq[/tex] N, an [tex]\geq[/tex] 1.
(b) Let en = |an −4|. Show that en+2 [tex]\leq[/tex](en+1 +en)/3 for n[tex]\geq[/tex] N.
(c) Prove that this sequence converges.
Can someone please give me some hints to start with a)? Thank you in advanced.
(a) Show that there is N such that for all n [tex]\geq[/tex] N, an [tex]\geq[/tex] 1.
(b) Let en = |an −4|. Show that en+2 [tex]\leq[/tex](en+1 +en)/3 for n[tex]\geq[/tex] N.
(c) Prove that this sequence converges.
Can someone please give me some hints to start with a)? Thank you in advanced.