- #1
Jameson
Gold Member
MHB
- 4,541
- 13
Problem: Let $A$ be a $n \times n$ matrix with real entries. Prove that if $A$ is symmetric, that is $A = A^T$ then all eigenvalues of $A$ are real.
Solution: I'm definitely not seeing how to approach this problem. I know that to calculate the eigenvalues of a matrix I need to solve $\text{det }(A-\lambda I)=0$ and I have experience calculating them, but I've never seen commentary on whether the values will be real or complex. Any ideas to get started?
Solution: I'm definitely not seeing how to approach this problem. I know that to calculate the eigenvalues of a matrix I need to solve $\text{det }(A-\lambda I)=0$ and I have experience calculating them, but I've never seen commentary on whether the values will be real or complex. Any ideas to get started?
Last edited: