- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hi! :)
Let L be the language, which has an infinite number of words, then there are words [tex]x,y,z \epsilon \Sigma ^{*}[/tex], so that [tex]|xz|\leq |\Sigma_{k}|[/tex], and each word [tex]xy^{(i)}z, i\geq0 [/tex] is in L.
How could we prove this modified Pumping Lemma?
Let L be the language, which has an infinite number of words, then there are words [tex]x,y,z \epsilon \Sigma ^{*}[/tex], so that [tex]|xz|\leq |\Sigma_{k}|[/tex], and each word [tex]xy^{(i)}z, i\geq0 [/tex] is in L.
How could we prove this modified Pumping Lemma?