- #1
stainburg
- 32
- 0
Let \(\displaystyle f\):\(\displaystyle (0,\infty) \to (0,\infty)\) be a monotonically decreasing convex function. Choose \(\displaystyle 0<x_1<x_2<...<x_n\), and \(\displaystyle \lambda_i \geq 0\) such that \(\displaystyle \sum_{i=0}^{n}\lambda_i=1\). Prove that
\(\displaystyle \sum_{j=1}^{n}\lambda_j x_j\sum_{i=1}^{n}\lambda_i f(x_i) \leq \frac{(x_nf(x_1)-x_1f(x_n))^2}{4(x_n-x_1)(f(x_1)-f(x_n))}\) .
\(\displaystyle \sum_{j=1}^{n}\lambda_j x_j\sum_{i=1}^{n}\lambda_i f(x_i) \leq \frac{(x_nf(x_1)-x_1f(x_n))^2}{4(x_n-x_1)(f(x_1)-f(x_n))}\) .