- #1
Math100
- 797
- 221
- Homework Statement
- If ## n>1 ## is an integer not of the form ## 6k+3 ##, prove that ## n^{2}+2^{n} ## is composite.
[Hint: Show that either ## 2 ## or ## 3 ## divides ## n^{2}+2^{n} ##.
- Relevant Equations
- None.
Proof:
Suppose ## n>1 ## is an integer not of the form ## 6k+3 ##.
Then we have ## n=6k ## for some ## k\in\mathbb{Z} ##.
Thus ## n^{2}+2^{n}=(6k)^{2}+2^{6k} ##
## =36k^{2}+2^{6k} ##
## =2(18k^{2}+2^{6k-1}) ##
## =2m ##,
where ## m=18k^{2}+2^{6k-1} ## is an integer.
This means ## 2\mid n^{2}+2^{n} ##,
which implies that ## n^{2}+2^{n} ## is composite.
Therefore, if ## n>1 ## is an integer not of the form ## 6k+3 ##,
then ## n^{2}+2^{n} ## is composite.
Suppose ## n>1 ## is an integer not of the form ## 6k+3 ##.
Then we have ## n=6k ## for some ## k\in\mathbb{Z} ##.
Thus ## n^{2}+2^{n}=(6k)^{2}+2^{6k} ##
## =36k^{2}+2^{6k} ##
## =2(18k^{2}+2^{6k-1}) ##
## =2m ##,
where ## m=18k^{2}+2^{6k-1} ## is an integer.
This means ## 2\mid n^{2}+2^{n} ##,
which implies that ## n^{2}+2^{n} ## is composite.
Therefore, if ## n>1 ## is an integer not of the form ## 6k+3 ##,
then ## n^{2}+2^{n} ## is composite.