- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to prove that for any natural numbers $n,m$ it holds that:
$$n \subset m \leftrightarrow n \in m \lor n=m$$
$"\Leftarrow"$: Using the sentence:
"For any natural numbers $m,n$ it holds that $n \in m \rightarrow n \subset m$"
if $n \in m \lor n=m$, we conclude that $n \subset m$.
$"\Rightarrow"$:
$$n \subset m \rightarrow n=m \lor n \subsetneq m$$
When $n=m$, the desired property is satisfied.
When $n \subsetneq m$, then could we use the definition of subset that is the following? (Thinking)
$$n \subsetneq m \leftrightarrow \forall x(x \in n \rightarrow x \in m)$$
I want to prove that for any natural numbers $n,m$ it holds that:
$$n \subset m \leftrightarrow n \in m \lor n=m$$
$"\Leftarrow"$: Using the sentence:
"For any natural numbers $m,n$ it holds that $n \in m \rightarrow n \subset m$"
if $n \in m \lor n=m$, we conclude that $n \subset m$.
$"\Rightarrow"$:
$$n \subset m \rightarrow n=m \lor n \subsetneq m$$
When $n=m$, the desired property is satisfied.
When $n \subsetneq m$, then could we use the definition of subset that is the following? (Thinking)
$$n \subsetneq m \leftrightarrow \forall x(x \in n \rightarrow x \in m)$$