- #1
DreamWeaver
- 303
- 0
Problem 3:
[tex]\int_0^{\infty} \frac{\sin^{-1}(b\sin x)}{x}\, dx=\text{Si}_2(b)[/tex]
Where[tex]\text{Si}_1(x)=\sin^{-1}x[/tex][tex]\text{Si}_{m+1}(x)=\int_0^x\frac{\text{Si}_m(t)}{t}\,dt[/tex]
Problem 4:[tex]\int_0^{\infty}\frac{\text{Si}_m(b\sin x)}{x}\,dx=\text{Si}_{m+1}(b)[/tex]
[tex]\int_0^{\infty} \frac{\sin^{-1}(b\sin x)}{x}\, dx=\text{Si}_2(b)[/tex]
Where[tex]\text{Si}_1(x)=\sin^{-1}x[/tex][tex]\text{Si}_{m+1}(x)=\int_0^x\frac{\text{Si}_m(t)}{t}\,dt[/tex]
Problem 4:[tex]\int_0^{\infty}\frac{\text{Si}_m(b\sin x)}{x}\,dx=\text{Si}_{m+1}(b)[/tex]