- #1
HernanV
- 1
- 0
hi, all
Let V be a Complex Vector Space:
probe that:
[tex] <u\mid v> = \frac {1} {4} (\parallel u + v \parallel ^ 2 - \parallel u - v \parallel ^ 2) - \frac {\imath} {4} (\parallel u + \imath v\parallel ^ 2 - \parallel u - \imath v\parallel ^ 2) \forall u,v [/tex]
Polarization formula.
i've multiplied both sides by 4, then aplicated internal product properties and obtained...
[tex] 4 <u\mid v> = 4 <u\mid v> - \imath 4 u [/tex]
please help!
thank you
Let V be a Complex Vector Space:
probe that:
[tex] <u\mid v> = \frac {1} {4} (\parallel u + v \parallel ^ 2 - \parallel u - v \parallel ^ 2) - \frac {\imath} {4} (\parallel u + \imath v\parallel ^ 2 - \parallel u - \imath v\parallel ^ 2) \forall u,v [/tex]
Polarization formula.
i've multiplied both sides by 4, then aplicated internal product properties and obtained...
[tex] 4 <u\mid v> = 4 <u\mid v> - \imath 4 u [/tex]
please help!
thank you