- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $0<a_i<\pi$, $i=1,\,\cdots,\,n$ and let $a=\dfrac{a_1+\cdots+a_n}{n}$. Prove that $\displaystyle \prod_{i=1}^{n} \left(\dfrac{\sin a_i}{a_i}\right)\le \left(\dfrac{\sin a}{a}\right)^n$.