- #1
sbhatnagar
- 87
- 0
Challenge Problem
If $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$, prove that
\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
If $A=\dfrac{\pi}{2^{n+1}}$ and $B=\dfrac{\pi}{2^{n+2}}$, prove that
\[\prod_{r=0}^n (\cos 2^r A + \cos 2^r B)=\frac{1}{2^{n+1}\left( \cos \frac{\pi}{2^{n+2}}-\cos \frac{\pi}{2^{n+1}}\right)}\]
Last edited: