- #1
Sho Kano
- 372
- 3
Homework Statement
A point moves on a curve [itex]\vec { r } [/itex] with constant acceleration [itex]\vec { A } [/itex], initial velocity [itex]\vec { { V }_{ 0 } } [/itex], and initial position [itex]{ \vec { { P }_{ 0 } } }[/itex]
b. if [itex]\vec { A } [/itex] and [itex]\vec { { V }_{ 0 } } [/itex] are parallel, prove [itex]\vec { r } [/itex] moves in a line
c. Assuming [itex]\vec { A } [/itex] and [itex]\vec { { V }_{ 0 } } [/itex] are not parallel, prove [itex]\vec { r } [/itex] lies in a plane.
Homework Equations
The Attempt at a Solution
part a asked for the position function, so here it is:
[itex]\vec { r(t) } =\frac { 1 }{ 2 } \vec { A } { t }^{ 2 }+\vec { { V }_{ 0 } } t+{ \vec { { P }_{ 0 } } }[/itex]
my attempt at part b:
[itex]\vec { A } [/itex] must be parallel to [itex]\vec { { V }_{ 0 } } [/itex], so [itex]\vec { A } =a\vec { { V }_{ 0 } } [/itex], where [itex]a[/itex] is some constant.
so [itex]\vec { r(t) } =\frac { 1 }{ 2 } \vec { a{ V }_{ 0 } } { t }^{ 2 }+\vec { { V }_{ 0 } } t+{ \vec { { P }_{ 0 } } }[/itex]
?