- #1
PhysicsRock
- 117
- 18
- Homework Statement
- Let ##X \subseteq \mathbb{Z}## be a subgroup of ##(\mathbb{Z},0,+)##. Show that an ##l \in \mathbb{N}_0## exists such that ##X = l \cdot \mathbb{Z}##.
- Relevant Equations
- There are no other equations, so I'm just gonna state the hint that comes with the problem here. It is: In case ##\{ 0 \} \subsetneq X## choose ##l = \min(X \cap \mathbb{N})##.
So, a friend of mine has attempted a solution. Unfortunately, he's having numbers spawn out of nowhere and a lot of stuff is going on there which I can't make sense of. I'm going to write down the entire attempt.
$$
0 \in X \; \text{otherwise no subgroup since neutral element isn't included} \notag
$$
For each additional element ##x##, ##-x## has to be an element as well, to satisfy the condition of an inverse. Now let ##H_+## be the set of all elements of ##X## that are greater or equal to ##0## and likewise for ##H_-## containing all negative integers. Then ##X = H_+ \cup H_-##. Following the hint, let ##l## be the smallest number contained in ##X##. For ##H_+,H_-##, ##l \cdot h = \underbrace{h + h + h + ... + h}_{l-times}## has to be an element of the respective group too, because of closedness.
Now let ##h \in H_+##. Then ##h = l \cdot z + r## with ##r < l## (don't know where the ##r## is coming from and why it has to be less than ##l##). Since ##l## is the smallest positive number and ##r < l##, it follows that ##r = 0## and this ##x = l \cdot z \, \forall \, x \in X##. The process is analogous for ##H_-##.
Does this make sense and if not, what went wrong? Thanks everyone!
$$
0 \in X \; \text{otherwise no subgroup since neutral element isn't included} \notag
$$
For each additional element ##x##, ##-x## has to be an element as well, to satisfy the condition of an inverse. Now let ##H_+## be the set of all elements of ##X## that are greater or equal to ##0## and likewise for ##H_-## containing all negative integers. Then ##X = H_+ \cup H_-##. Following the hint, let ##l## be the smallest number contained in ##X##. For ##H_+,H_-##, ##l \cdot h = \underbrace{h + h + h + ... + h}_{l-times}## has to be an element of the respective group too, because of closedness.
Now let ##h \in H_+##. Then ##h = l \cdot z + r## with ##r < l## (don't know where the ##r## is coming from and why it has to be less than ##l##). Since ##l## is the smallest positive number and ##r < l##, it follows that ##r = 0## and this ##x = l \cdot z \, \forall \, x \in X##. The process is analogous for ##H_-##.
Does this make sense and if not, what went wrong? Thanks everyone!