MHB Prove $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$ with $s+t+u+v=0$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Algebra Challenge
AI Thread Summary
The equation $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$ is to be proven under the condition that $s+t+u+v=0$. Participants discuss the implications of this condition on the cubic terms and the products of the variables. The proof involves algebraic manipulation and the application of symmetric sums. The challenge highlights the relationship between the sums of cubes and the products of pairs of variables. The discussion acknowledges contributions from users kaliprasad and greg1313.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.
 
Mathematics news on Phys.org
anemone said:
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.

from the above
$(s+t) = -(u+v)\cdots(1)$
also
$s+t+ u = -v \cdots(2)$
cube both sides of (1) to get
$(s+t)^3 = - (u+v)^3$
or $s^3+t^3 + 3st(s+t) = - (u^3+v^3 + 3uv(u+v)$
or $s^3+t^3+ u^3+v^3 = -(3st(s+t) + 3uv(u+v))= -3(st(s+t) - uv(s+t))$ using (1)
or $s^3+t^3+u^3+v^3 = -3(st-uv)(s+t)\cdots(3)$
by symmetry we can show that
$s^3+t^3+u^3+v^3 = -3(su-tv)(s+u)\cdots(4)$
by multiplying (3) with (4) we get
$(s^3+t^3+u^3+v^3)^2 = 9(st-uv)(su-tv)((s+t)(s+u))$
= $9(st-uv)(su-tv)(s^2+ st + su + ut)$
= $9(st-uv)(su-tv)(s(s+t+u) + ut)$
= $9(st-uv)(su-tv)(-vs + ut)$ using (2)
= $9(st-uv)(ut-sv)(su-tv)$

Proved
 
anemone said:
Let $s,\,t,\,u,\,v$ be real numbers such that $s+t+u+v=0$.

Prove that $(s^3+t^3+u^3+v^3)^2=9(st-uv)(tu-sv)(us-tv)$.

$$\text{L.H.S:}$$

$$(s^3+t^3+u^3+v^3)^2$$

$$=[(s+t)(s^2-st+t^2)+(u+v)(u^2-uv+v^2)]^2$$

$$=[(s+t)(s^2-st+t^2)-(s+t)(u^2-uv+v^2)]^2$$

$$=(s+t)^2(s^2-u^2+t^2-v^2-st+uv)^2$$

$$=(s+t)^2[(s-u)(s+u)+(t-v)(t+v)-st+uv]^2$$

$$=(s+t)^2[-(s-u)(t+v)-(t-v)(s+u)-st+uv]^2$$

$$=(s+t)^2(-st-sv+tu+uv-st-tu+sv+uv-st+uv)^2$$

$$=(s+t)^2(-3st+3uv)^2$$

$$=9(st-uv)^2(s+t)^2$$

$$(st-uv)(s+t)^2=st(u+v)^2-uv(s+t)^2=stu^2+2stuv+stv^2-s^2uv-2stuv-t^2uv=stu^2-t^2uv-s^2uv+stv^2$$

$$\text{R.H.S:}$$

$$9(st-uv)(tu-sv)(su-tv)$$

$$(tu-sv)(su-tv)=stu^2-t^2uv-s^2uv+stv^2$$

(as required).
 
Thanks to kaliprasad and greg1313 for participating in this challenge! :)
 
greg1313 said:
$$(st-uv)(s+t)^2=st(u+v)^2-uv(s+t)^2=stu^2+2stuv+stv^2-s^2uv-2stuv-t^2uv=stu^2-t^2uv-s^2uv+stv^2$$
smart reduction I struggled here before I changed my method
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top